Features and application of seismic-while-excavating signals during TBM excavation in coal mine rock roadways
-
摘要: 随掘地震超前探测技术可实现探掘平行,为巷道快速智能掘进场景下实时、精准地质保障提供了可能。随掘震源产生的是复杂、变频、连续信号,信号特征认知直接影响数据处理与成像精度,而目前针对岩巷全断面掘进机(TBM)随掘地震信号特征的认知仍不清晰,且暂时还没有针对性开展过信号处理与成像研究工作。针对上述问题,以谢桥煤矿瓦斯治理巷TBM随掘地震超前探测试验为例,分析了刀盘先导信号与岩壁接收信号的时间域、频率域及时频域特征:岩巷TBM随掘地震信号中不同振幅能量成分比例呈现金字塔形,但分布随机,不对称程度较高;机械运转信号能量较大,刀盘先导信号强度是岩壁接收信号的200倍左右;频率域变频特征明显;机械运转信号基础频率较低,刀盘先导信号频率成分主要集中在10~80 Hz与150~200 Hz,主频为36.99 Hz,岩壁接收信号频率成分主要集中在50~200 Hz,主频为137.97 Hz;刀盘先导信号较岩壁接收信号时频域能量团分布更为规则,多次震源激发现象明显,能量团之间的差异性特征表明了多次震源激发时振幅能量与持续时间的随机性。利用脉冲化算法与绕射叠加偏移成像方法对岩巷TBM随掘地震信号进行数据处理与成像试验,结果表明:① 脉冲化等效单炮记录与利用常规震源得到的超前探测单炮记录特征一致性较强,同相轴清晰且连续性较好,可满足现场探测分析需要。② 对探测范围内岩体情况的超前预报结果与实际揭露情况一致,说明岩巷TBM随掘地震超前探测可提供有效地质保障。Abstract: The advanced seismic-while-excavating detection technology can achieve parallel exploration and excavation, providing the possibility of real-time and accurate geological support in the scenario of rapid and intelligent excavation of roadways. The signals generated by the excavation seismic source are complex, variable frequency, and continuous. The recognition of signal features directly affects the accuracy of data processing and imaging. However, currently, the recognition of seismic-while-excavating signal features for rock tunnel boring machine (TBM) is still unclear, and there is currently no targeted research on signal processing and imaging. In order to solve the above problems, taking the TBM advanced seismic-while-excavating detection test of the gas control roadway in Xieqiao Coal Mine as an example, the time domain, frequency domain, and frequency domain features of the cutterhead pilot signal and the rock wall received signal are analyzed. The proportion of different amplitude energy components in the rock roadway TBM seismic-while-excavating signal show a pyramid shape. But the distribution is random and the degree of asymmetry is high. The energy of the mechanical operation signal is relatively high, and the strength of the cutterhead pilot signal is about 200 times that of the signal received by the rock wall. The frequency domain frequency conversion features are obvious. The basic frequency of the mechanical operation signal is relatively low, and the frequency components of the cutterhead pilot signal are mainly concentrated in the range of 10-80 Hz and 150-200 Hz, with a main frequency of 36.99 Hz. The frequency components of the rock wall received signal are mainly concentrated in the range of 50-200 Hz, with a main frequency of 137.97 Hz. The frequency domain energy distribution of the cutterhead pilot signal is more regular than that of the rock wall received signal, and the phenomenon of multiple source excitation is obvious. The difference features between energy clusters indicate the randomness of amplitude energy and duration during multiple source excitations. The data processing and imaging experiments of TBM seismic-while-excavating signals in rock roadways are carried out using the pulse algorithm and diffraction stacking migration imaging method. The results show the following points. ① The pulse equivalent single shot record has strong consistency with the advanced detection single shot record obtained from conventional seismic-while-excavating sources, with clear and continuous in-phase axes, which can meet the needs of on-site detection analysis.② The advanced prediction results of the rock mass situation within the detection range are consistent with the actual exposure, indicating that TBM advanced seismic-while-excavating detection in rock roadways can provide effective geological support.
-
表 1 试验巷道TBM掘进循环记录
Table 1. TBM excavating cycle record in test roadway
循环轮次 开始时间 结束时间 掘进用时 /min 循环进尺 /m 1 1:30 1:55 25 0.8 2 3:00 3:30 30 1 3 5:40 6:10 30 1 4 15:30 16:07 37 1.1 5 17:21 17:56 35 1 6 20:00 20:35 35 1 7 22:15 22:50 35 1 -
[1] 王国法,杜毅博,徐亚军,等. 中国煤炭开采技术及装备50年发展与创新实践——纪念《煤炭科学技术》创刊50周年[J]. 煤炭科学技术,2023,51(1):1-18.WANG Guofa,DU Yibo,XU Yajun,et al. Development and innovation practice of China coal mining technology and equipment for 50 years:Commemorate the 50th anniversary of the publication of Coal Science and Technology[J]. Coal Science and Technology,2023,51(1):1-18. [2] 王国法,徐亚军,张金虎,等. 煤矿智能化开采新进展[J]. 煤炭科学技术,2021,49(1):1-10.WANG Guofa,XU Yajun,ZHANG Jinhu,et al. New development of intelligent mining in coal mines[J]. Coal Science and Technology,2021,49(1):1-10. [3] 刘峰,曹文君,张建明,等. 我国煤炭工业科技创新进展及“十四五”发展方向[J]. 煤炭学报,2021,46(1):1-15.LIU Feng,CAO Wenjun,ZHANG Jianming,et al. Current technological innovation and development direction of the 14(th) Five-Year Plan period in China coal industry[J]. Journal of China Coal Society,2021,46(1):1-15. [4] 叶仿拥,马永辉,徐晋勇,等. 掘进装备在我国煤矿中的发展及趋势[J]. 煤炭科学技术,2009,37(4):61-64.YE Fangyong,MA Yonghui,XU Jinyong,et al. Development and tendency of mine roadway heading equipment in China coal mines[J]. Coal Science and Technology,2009,37(4):61-64. [5] 袁亮,王恩元,马衍坤,等. 我国煤岩动力灾害研究进展及面临的科技难题[J]. 煤炭学报,2023,48(5):1825-1845.YUAN Liang,WANG Enyuan,MA Yankun,et al. Research progress of coal and rock dynamic disasters and scientific and technological problems in China[J]. Journal of China Coal Society,2023,48(5):1825-1845. [6] 刘泉声,时凯,黄兴. TBM应用于深部煤矿建设的可行性及关键科学问题[J]. 采矿与安全工程学报,2013,30(5):633-641.LIU Quansheng,SHI Kai,HUANG Xing. Feasibility of application of TBM in construction of deep coal mine and its key scientific problems[J]. Journal of Mining & Safety Engineering,2013,30(5):633-641. [7] 刘泉声,黄兴,刘建平,等. 深部复合地层围岩与TBM的相互作用及安全控制[J]. 煤炭学报,2015,40(6):1213-1224.LIU Quansheng,HUANG Xing,LIU Jianping,et al. Interaction and safety control between TBM and deep mixed ground[J]. Journal of China Coal Society,2015,40(6):1213-1224. [8] 王杜娟,贺飞,王勇,等. 煤矿岩巷全断面掘进机(TBM)及智能化关键技术[J]. 煤炭学报,2020,45(6):2031-2044.WANG Dujuan,HE Fei,WANG Yong,et al. Tunnel boring machine (TBM) in coal mine and its intelligent key technology[J]. Journal of China Coal Society,2020,45(6):2031-2044. [9] 赵栓峰,丁志兵,李凯凯,等. 盾构机掘进煤矿巷道超前探测系统[J]. 煤矿安全,2019,50(2):117-120.ZHAO Shuanfeng,DING Zhibing,LI Kaikai,et al. Advanced detection system for shield tunneling coal roadway[J]. Safety in Coal Mines,2019,50(2):117-120. [10] 张洪伟,胡兆锋,程敬义,等. 深部高温矿井大断面岩巷TBM智能掘进技术——以“新矿1号”TBM为例[J]. 煤炭学报,2021,46(7):2174-2185.ZHANG Hongwei,HU Zhaofeng,CHENG Jingyi,et al. TBM techniques for intelligent excavating large-section rock roadway in the deep high-temperature coal mines:Application of TBM in Xinkuang No. 1[J]. Journal of China Coal Society,2021,46(7):2174-2185. [11] 袁亮,张平松. 煤炭精准开采地质保障技术的发展现状及展望[J]. 煤炭学报,2019,44(8):2277-2284.YUAN Liang,ZHANG Pingsong. Development status and prospect of geological guarantee technology for precise coal mining[J]. Journal of China Coal Society,2019,44(8):2277-2284. [12] 彭苏萍. 我国煤矿安全高效开采地质保障系统研究现状及展望[J]. 煤炭学报,2020,45(7):2331-2345.PENG Suping. Current status and prospects of research on geological assurance system for coal mine safe and high efficient mining[J]. Journal of China Coal Society,2020,45(7):2331-2345. [13] 董书宁,刘再斌,程建远,等. 煤炭智能开采地质保障技术及展望[J]. 煤田地质与勘探,2021,49(1):21-31. doi: 10.3969/j.issn.1001-1986.2021.01.003DONG Shuning,LIU Zaibin,CHENG Jianyuan,et al. Technologies and prospect of geological guarantee for intelligent coal mining[J]. Coal Geology & Exploration,2021,49(1):21-31. doi: 10.3969/j.issn.1001-1986.2021.01.003 [14] 张平松,李圣林,邱实,等. 巷道快速智能掘进超前探测技术与发展[J]. 煤炭学报,2021,46(7):2158-2173.ZHANG Pingsong,LI Shenglin,QIU Shi,et al. Advance detection technology and development of fast intelligent roadway drivage[J]. Journal of China Coal Society,2021,46(7):2158-2173. [15] 袁亮,张平松. TBM施工岩巷掘探一体化技术研究进展与思考[J]. 煤田地质与勘探,2023,51(1):21-32. doi: 10.12363/issn.1001-1986.22.12.0967YUAN Liang,ZHANG Pingsong. Research progress and thinking on integrated tunneling and detection technology of rock roadway with TBM[J]. Coal Geology & Exploration,2023,51(1):21-32. doi: 10.12363/issn.1001-1986.22.12.0967 [16] 程久龙,谢晨,孙晓云,等. 随掘地震超前探测理论与方法初探[C]. 中国地球科学联合学术年会,北京,2015:2555-2556.CHENG Jiulong,XIE Chen,SUN Xiaoyun,et al. Preliminary study on theory and method of advanced detection of earthquake while excavating[C]. Annual Meeting of Chinese Geoscience Union,Beijing,2015:2555-2556. [17] 覃思. 煤矿井下随采地震技术的试验研究[D]. 北京:煤炭科学研究总院,2016.QIN Si. Experimental study of seismic while mining in underground coal mines[D]. Beijing:CCTEG Chinese Institute of Coal Science,2016. [18] XU Xinji,ZHANG Panlong,GUO Xu,et al. A case study of seismic forward prospecting based on the tunnel seismic while drilling and active seismic methods[J]. Bulletin of Engineering Geology and the Environment,2021,80:3553-3567. doi: 10.1007/s10064-020-02088-z [19] 程久龙,程鹏,李亚豪. 基于IABC−ICA的随掘地震去噪方法[J]. 煤炭学报,2022,47(1):413-422.CHENG Jiulong,CHENG Peng,LI Yahao. Denoising method of mine seismic while drilling data based on IABC-ICA[J]. Journal of China Coal Society,2022,47(1):413-422. [20] 王保利,程建远,金丹,等. 煤矿井下随掘地震震源特征及探测性能研究[J]. 煤田地质与勘探,2022,50(1):10-19.WANG Baoli,CHENG Jianyuan,JIN Dan,et al. Characteristics and detection performance of the source of seismic while excavating in underground coal mines[J]. Coal Geology & Exploration,2022,50(1):10-19. [21] 张平松,李圣林,郭立全. 矿井随掘地震震源时间函数及其模拟数据脉冲化处理研究[J]. 煤炭科学技术,2023,51(1):361-368.ZHANG Pingsong,LI Shenglin,GUO Liquan. Study on time function of seismic source and numerical simulation data impulse processing of seismic while driving in mining[J]. Coal Science and Technology,2023,51(1):361-368. [22] POLETTO F,PETRONIO L. Seismic interferometry with a TBM source of transmitted and reflected waves[J]. Geophysics,2006,71(4). DOI: 10.1190/1.2213947. [23] 程久龙,高峰,孙晓云,等. 随掘地震去噪方法研究[C]. 中国地球科学联合学术年会,北京,2014:1349-1352.CHENG Jiulong,GAO Feng,SUN Xiaoyun,et al. Research on seismic denoising method while digging[C]. Annual Meeting of Chinese Geoscience Union,Beijing,2014:1349-1352. [24] 覃思,程建远. 煤矿井下随采地震反射波勘探试验研究[J]. 煤炭科学技术,2015,43(1):116-119.QIN Si,CHENG Jianyuan. Experimental study on seismic while mining for underground coal mine reflection survey[J]. Coal Science and Technology,2015,43(1):116-119. [25] 许新骥. TBM掘进破岩震源地震波超前地质探测方法及工程应用[D]. 济南:山东大学,2017.XU Xinji. TBM rock-breaking source seismic method and its applications for ahead geological prospecting in TBM construction tunnel[D]. Jinan:Shandong University,2017. [26] HARMANKAYA U,KASLILAR A,WAPENAAR K,et al. Locating scatterers while drilling using seismic noise due to tunnel boring machine[J]. Journal of Applied Geophysics,2018,152:86-99. doi: 10.1016/j.jappgeo.2018.03.017 [27] 王季,覃思,陆斌,等. 基于掘进机随掘震源的巷道侧前方断层成像技术[J]. 煤炭科学技术,2021,49(2):232-237.WANG Ji,QIN Si,LU Bin,et al. Tomographic imaging technology of front side of roadway based on excavation source of roadheader[J]. Coal Science and Technology,2021,49(2):232-237. [28] LI Shenglin,ZHANG Pingsong. Processing of random roadway source signals based on across-correlation algorithm in the deconvolution domain[J]. Exploration Geophysics,2020,52(1):98-108. [29] 李圣林,张平松,姬广忠,等. 随掘地震超前探测掘进机震源信号的复合干涉处理研究[J]. 采矿与安全工程学报,2022,39(2):305-316.LI Shenglin,ZHANG Pingsong,JI Guangzhong,et al. Compound interference processing of roadheader source signal for advanced seismic detection while drilling[J]. Journal of Mining & Safety Engineering,2022,39(2):305-316. [30] 张凤凯. TBM破岩震源探测数据的全波形反演和逆时偏移成像方法[D]. 济南:山东大学,2020.ZHANG Fengkai. Full waveform inversion and inverse time migration imaging method of the seismic data while tunneling using TBM drilling noise in tunnel[D]. Jinan:Shandong University,2020. [31] 刘强. L1范数约束的随掘地震噪声衰减[J]. 煤炭学报,2021,46(8):2699-2705.LIU Qiang. Noise attenuation based on L1-norm constraint inversion in seismic while drilling[J]. Journal of China Coal Society,2021,46(8):2699-2705. [32] 沈鸿雁,李庆春,冯宏. 隧道反射地震超前探测偏移成像[J]. 煤炭学报,2009,34(3):298-304. doi: 10.3321/j.issn:0253-9993.2009.03.003SHEN Hongyan,LI Qingchun,FENG Hong. Migration imaging for tunnel reflected-wave seismic prediction ahead[J]. Journal of China Coal Society,2009,34(3):298-304. doi: 10.3321/j.issn:0253-9993.2009.03.003 [33] 张平松,刘盛东,吴健生. 坑道掘进空间反射波超前探测技术[J]. 煤炭学报,2010,35(8):1331-1335.ZHANG Pingsong,LIU Shengdong,WU Jiansheng. Tunnel reflection wave imaging technology and its system during driving space[J]. Journal of China Coal Society,2010,35(8):1331-1335.