留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

综采工作面液压支架测高传感器设计

高思伟 谷敏永 李殿鹏

高思伟,谷敏永,李殿鹏. 综采工作面液压支架测高传感器设计[J]. 工矿自动化,2024,50(6):129-135.  doi: 10.13272/j.issn.1671-251x.2024010089
引用本文: 高思伟,谷敏永,李殿鹏. 综采工作面液压支架测高传感器设计[J]. 工矿自动化,2024,50(6):129-135.  doi: 10.13272/j.issn.1671-251x.2024010089
GAO Siwei, GU Minyong, LI Dianpeng. Design of height measurement sensor for hydraulic support in fully mechanized working face[J]. Journal of Mine Automation,2024,50(6):129-135.  doi: 10.13272/j.issn.1671-251x.2024010089
Citation: GAO Siwei, GU Minyong, LI Dianpeng. Design of height measurement sensor for hydraulic support in fully mechanized working face[J]. Journal of Mine Automation,2024,50(6):129-135.  doi: 10.13272/j.issn.1671-251x.2024010089

综采工作面液压支架测高传感器设计

doi: 10.13272/j.issn.1671-251x.2024010089
基金项目: 国家重点研发计划资助项目(2023YFB3211005)。
详细信息
    作者简介:

    高思伟(1989—),男,四川绵阳人,助理研究员,硕士研究生,主要研究方向为自动化控制技术,E-mail:gaosw@tdmarco.com

  • 中图分类号: TD355.4

Design of height measurement sensor for hydraulic support in fully mechanized working face

  • 摘要: 针对综采工作面液压支架高度测量困难和可靠性、稳定性差等问题,设计了一种基于帕斯卡定律的液压支架测高传感器。该测高传感器内置一根细长液管,液管中充满甲基硅油,测高传感器两端安装压力传感器,通过测量密闭液管的两端压力,得到测高传感器两端位置的高度差。甲基硅油在环境温度变化时具有明显的热胀冷缩特性,会引起密闭空间内的压力急剧变化,影响测量精度,提出了一种补偿方法:采用波纹管存储一部分甲基硅油,利用波纹管自身的弹性补偿甲基硅油热胀冷缩造成的体积变化;并在软件中通过算法校准甲基硅油体积变化带来的密度变化,从而确保测高传感器的测量精度。试验结果表明:测高传感器可工作在0~40 ℃环境下,测量误差在4 cm以内。在薄煤层、中厚煤层综采工作面液压支架的现场应用结果表明:与人工测量结果相比,测高传感器的高度测量误差在5 cm以内,说明该传感器可靠性较高。

     

  • 图  1  测高传感器原理

    Figure  1.  Principle of height measurement sensor

    图  2  测高传感器硬件结构

    Figure  2.  Hardware structure of height measurement sensor

    图  3  I2C驱动提升电路

    Figure  3.  I2C drive lift circuit

    图  4  测高传感器外观结构

    Figure  4.  Appearance structure of height measurement sensor

    图  5  压力传感器及气密芯阀安装结构

    Figure  5.  Installation diagram of pressure sensor and airtight core valve

    图  6  测高传感器软件流程

    Figure  6.  Software flow of height measurement sensor

    表  1  甲基硅油密度与温度关系对应

    Table  1.   Correspondence between density and temperature of methyl silicone oil

    理想测试温度/℃ 密度/(g·cm−3 实测温度/℃ 密度平均值/(g·cm−3
    10 0.953 09 10.04 0.953 10
    0.953 11 10.01
    15 0.948 50 14.99 0.948 50
    0.948 49 15.01
    18 0.945 73 17.99 0.945 72
    0.945 71 18.01
    21 0.942 96 21.01 0.942 96
    0.942 96 21.01
    24 0.940 22 23.99 0.940 21
    0.940 19 24.01
    27 0.937 45 26.99 0.937 45
    0.937 44 27.01
    30 0.934 70 30.01 0.934 70
    0.934 70 29.99
    35 0.930 10 34.99 0.930 11
    0.930 12 34.99
    40 0.925 55 39.99 0.925 56
    0.925 56 39.99
    下载: 导出CSV

    表  2  高温到低温变化过程中的传感器数据

    Table  2.   Sensor data during high temperature to low temperature changes

    温度/℃ 高度/cm 下端压力/kPa 上端压力/kPa
    40.08 154.16 140.24 126.26
    35.00 153.04 130.32 116.36
    30.02 152.81 123.43 109.41
    25.04 153.61 115.09 100.95
    20.05 153.21 108.73 94.56
    15.03 152.93 103.68 89.46
    9.98 153.85 99.74 85.37
    5.01 152.67 95.84 81.51
    0.04 153.20 92.48 78.03
    下载: 导出CSV

    表  3  低温到高温变化过程中的传感器数据

    Table  3.   Sensor data during low temperature to high temperature changes

    温度/℃高度/cm下端压力/kPa上端压力/kPa
    0.02153.5191.8777.40
    5.03153.1795.6481.23
    10.05152.80100.2886.01
    14.97153.85105.8491.54
    20.01152.94111.3897.23
    25.03153.14118.28104.18
    29.96153.59124.93110.87
    34.98154.11133.28119.24
    40.02153.88143.39128.44
    下载: 导出CSV

    表  4  常温下检测精度试验结果

    Table  4.   Test results of detection precision at normal temperature

    实际高度/cm 检测高度/cm 环境温度/℃
    0 0.773 220 24.484 61
    100 98.620 932 24.484 61
    200 201.481 950 24.093 79
    300 302.477 290 24.289 20
    400 399.922 510 24.289 20
    500 500.598 310 24.386 90
    600 598.760 030 24.386 90
    700 701.423 10 24.386 90
    800 800.505 50 24.483 90
    900 898.608 90 24.483 90
    1 000 999.288 90 24.483 90
    下载: 导出CSV

    表  5  中厚煤层支架测高传感器数据对比

    Table  5.   Data comparison of support height sensor for medium-thick coal seam cm

    支架号 初次安装 3个月后
    检测值 人工测量值 检测值 人工测量值
    20 376 373 369 372
    29 348 343 365 367
    39 366 363 359 357
    49 363 360 364 368
    60 348 348 363 361
    下载: 导出CSV

    表  6  较薄煤层支架测高传感器数据对比

    Table  6.   Data comparison of support height sensor for thin coal seam cm

    支架号 初次安装 3个月后
    检测值 人工测量值 检测值 人工测量值
    15 149 151 151 149
    20 158 156 154 155
    25 147 147 159 161
    30 142 142 155 159
    35 132 128 161 159
    下载: 导出CSV
  • [1] WANG Guofa. New development of longwall mining equipment based on automation and intelligent technology for thin seam coal[J]. Journal of Coal Science and Engineering (China),2013,19(1):97-103. doi: 10.1007/s12404-013-0116-5
    [2] 王国法,庞义辉,任怀伟. 煤矿智能化开采模式与技术路径[J]. 采矿与岩层控制工程学报,2020,2(1):5-19.

    WANG Guofa,PANG Yihui,REN Huaiwei. Intelligent coal mining pattern and technological path[J]. Journal of Mining and Strata Control Engineering,2020,2(1):5-19.
    [3] 王文海,蒋力帅,王庆伟,等. 煤矿综采工作面智能开采技术现状与展望[J]. 中国煤炭,2021,47(11):51-55.

    WANG Wenhai,JIANG Lishuai,WANG Qingwei,et al. Current situation and prospect of intelligent mining technology of fully mechanized mining face in coal mine[J]. China Coal,2021,47(11):51-55.
    [4] 高有进,杨艺,常亚军,等. 综采工作面智能化关键技术现状与展望[J]. 煤炭科学技术,2021,49(8):1-22.

    GAO Youjin,YANG Yi,CHANG Yajun,et al. Status and prospect of key technologies of intelligentization of fully-mechanized coal mining face[J]. Coal Science and Technology,2021,49(8):1-22.
    [5] 陆庭锴,马鹏宇,冯卓照,等. 液压支架姿态动态监测与控制系统设计[J]. 煤炭科学技术,2014,42(增刊1):169-170,172.

    LU Tingkai,MA Pengyu,FENG Zhuozhao,et al. Design on posture dynamic monitoring and control system of hydraulic support[J]. Coal Science and Technology,2014,42(S1):169-170,172.
    [6] 李建,任怀伟,巩师鑫. 综采工作面液压支架状态感知与分析技术研究[J]. 工矿自动化,2023,49(10):1-7,103.

    LI Jian,REN Huaiwei,GONG Shixin. Research on state perception and analysis technology of hydraulic support in fully mechanized working face[J]. Journal of Mine Automation,2023,49(10):1-7,103.
    [7] 满溢桥. 液压支架护帮板与采煤机滚筒截割干涉监测技术研究[D]. 徐州:中国矿业大学,2019.

    MAN Yiqiao. Research on the monitoring technology of cutting interference between hydraulic support face guard and shearer drum[D]. Xuzhou:China University of Mining and Technology,2019.
    [8] 牛剑峰. 液压支架高度测量技术研究与应用[J]. 煤矿机械,2015,36(5):210-212.

    NIU Jianfeng. Hydraulic support height measurement technology research and application[J]. Coal Mine Machinery,2015,36(5):210-212.
    [9] 牛剑峰,朱小林,师勇. 一种带倾角传感器的液压支架及其高度测量方法:CN102392664A[P]. 2012-03-28.

    NIU Jianfeng,ZHU Xiaolin,SHI Yong. A hydraulic support with inclination sensor and its height measurement method:CN102392664A[P]. 2012-03-28.
    [10] 陈冬方,李首滨. 基于液压支架倾角的采煤高度测量方法[J]. 煤炭学报,2016,41(3):788-793.

    CHEN Dongfang,LI Shoubin. Measurement of coal mining height based on hydraulic support structural angle[J]. Journal of China Coal Society,2016,41(3):788-793.
    [11] 马旭东,许春雨,宋建成. 综采工作面液压支架姿态监测系统设计[J]. 煤炭技术,2019,38(7):174-177.

    MA Xudong,XU Chunyu,SONG Jiancheng. Design of attitude monitoring system for hydraulic support in fully mechanized face[J]. Coal Technology,2019,38(7):174-177.
    [12] 任怀伟,李帅帅,李勰,等. 液压支架顶梁位姿调控仿真分析[J]. 工矿自动化,2019,45(10):11-16.

    REN Huaiwei,LI Shuaishuai,LI Xie,et al. Simulation analysis of roof beam position and attitude control of hydraulic support[J]. Industry and Mine Automation,2019,45(10):11-16.
    [13] 黄鹤松,王飞,田成金,等. 基于倾角传感器的矿用液压支架测高系统设计[J]. 煤炭科学技术,2018,46(3):124-129,193.

    HUANG Hesong,WANG Fei,TIAN Chengjin,et al. Design on height measuring system of mine hydraulic powered support based on inclination sensor[J]. Coal Science and Technology,2018,46(3):124-129,193.
    [14] 张坤,廉自生,谢嘉成,等. 基于多传感器数据融合的液压支架高度测量方法[J]. 工矿自动化,2017,43(9):65-69.

    ZHANG Kun,LIAN Zisheng,XIE Jiacheng,et al. Height measurement method of hydraulic support based on multi-sensor data fusion[J]. Industry and Mine Automation,2017,43(9):65-69.
    [15] 赵亚玲,陈斐. 基于多传感器信息融合技术的液压支架监测系统设计[J]. 煤矿机械,2019,40(8):185-187.

    ZHAO Yaling,CHEN Fei. Design of hydraulic support monitoring system based on multi-sensor information fusion technology[J]. Coal Mine Machinery,2019,40(8):185-187.
    [16] 张坤. 基于信息融合技术的液压支架姿态监测方法研究[D]. 太原:太原理工大学,2018.

    ZHANG Kun. Research on attitude monitoring method of hydraulic support based on information fusion technology[D]. Taiyuan:Taiyuan University of Technology,2018.
    [17] 张凯,田原,贾曲. 机器视觉在煤机装备中的应用现状与趋势[J]. 煤矿机械,2020,41(12):123-125.

    ZHANG Kai,TIAN Yuan,JIA Qu. Application status and trend of machine vision in coal machinery equipment[J]. Coal Mine Machinery,2020,41(12):123-125.
    [18] 任怀伟,李帅帅,赵国瑞,等. 基于深度视觉原理的工作面液压支架支撑高度与顶梁姿态角测量方法研究[J]. 采矿与安全工程学报,2022,39(1):72-81,93.

    REN Huaiwei,LI Shuaishuai,ZHAO Guorui,et al. Measurement method of support height and roof beam posture angles for working face hydraulic support based on depth vision[J]. Journal of Mining & Safety Engineering,2022,39(1):72-81,93.
    [19] 许金星. 机器视觉的液压支架姿态角度测量系统设计[J]. 煤矿机械,2019,40(9):11-13.

    XU Jinxing. Design of attitude angle measurement system for hydraulic support based on machine vision[J]. Coal Mine Machinery,2019,40(9):11-13.
    [20] 张旭辉,王冬曼,杨文娟. 基于视觉测量的液压支架位姿检测方法[J]. 工矿自动化,2019,45(3):56-60.

    ZHANG Xuhui,WANG Dongman,YANG Wenjuan. Position detection method of hydraulic support based on vision measurement[J]. Industry and Mine Automation,2019,45(3):56-60.
    [21] 王忠乐. 综采液压支架姿态监测及控制技术[J]. 工矿自动化,2022,48(增刊2):116-117,137.

    WANG Zhongle. Attitude monitoring and control technology of fully mechanized mining hydraulic support[J]. Journal of Mine Automation,2022,48(S2):116-117,137.
  • 加载中
图(6) / 表(6)
计量
  • 文章访问数:  104
  • HTML全文浏览量:  29
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-25
  • 修回日期:  2024-05-30
  • 网络出版日期:  2024-06-24

目录

    /

    返回文章
    返回