Design of mine opposed wind speed and direction sensor
-
摘要: 针对目前风速传感器启动风速高、设计方案复杂、无法准确测量巷道整个断面平均风速的问题,基于超声波对射式测风原理,设计了以STM32为核心的矿用对射式风速风向传感器,介绍了传感器总体结构、收发电路设计、滤波算法及软件流程。该传感器改变了以点带面的测风方式,通过大距离(5~12 m)超声测风技术测量巷道中线风速,以该风速代表整个巷道的平均风速,提高了巷道风速测量的准确性和实时性。依据设计方案研发了测试样机,在环形风洞中的测试结果表明,该传感器测量值与风速标准值在0.1~15 m/s内具有较好的一致性,测量误差小于0.1 m/s,能够满足智能化矿井对巷道风速测量精度的要求。Abstract: In response to the current problems of high startup wind speed, complex design schemes, and inability to accurately measure the average wind speed of the entire section of the roadway using wind speed sensors, based on the principle of ultrasonic opposed wind measurement, a mine opposed wind speed and direction sensor with STM32 as the core is designed. The overall structure of the sensor, the design of the transmitting and receiving circuit, the filtering algorithm, and the software process are introduced. This sensor has changed the wind measurement method from point to surface, using a single ARM core and measuring the wind speed at the centerline of the roadway through long-distance (5-12 m) ultrasonic wind measurement technology. This wind speed represents the average wind speed of the entire roadway. It greatly improves the accuracy and real-time performance of roadway wind speed measurement. A test prototype is developed based on the design scheme, and the test results in a circular wind tunnel show that the measured values of the sensor has good consistency with the standard wind speed values in the range of 0.1-15 m/s, with a measurement error of less than 0.1 m/s. It can meet the precision requirements of intelligent mines for roadway wind speed measurement.
-
表 1 传感器测试结果
Table 1. Sensor test results
m/s 风速
标准值风速
测量值误差 风速
标准值风速
测量值误差 0 0.01 −0.01 5.96 5.99 −0.03 0.16 0.15 0.01 7.05 7.01 0.04 0.24 0.23 0.01 7.97 8.04 −0.07 0.44 0.42 0.02 9.07 9.14 −0.07 0.72 0.71 0.01 10.25 10.28 −0.03 0.96 0.94 0.02 12.09 12.11 −0.02 1.96 1.89 0.07 15.13 15.14 −0.01 2.98 2.98 0 20.11 20.12 −0.01 3.94 3.96 −0.02 25.10 25.96 −0.86 4.95 5.07 −0.12 -
[1] 周福宝,辛海会,魏连江,等. 矿井智能通风理论与技术研究进展[J]. 煤炭科学技术,2023,51(1):313-328.ZHOU Fubao,XIN Haihui,WEI Lianjiang,et al. Research progress of mine intelligent ventilation theory and technology[J]. Coal Science and Technology,2023,51(1):313-328. [2] 张庆华. 我国煤矿通风技术与装备发展现状及展望[J]. 煤炭科学技术,2016,44(6):146-151.ZHANG Qinghua. Development and prospect of mine ventilation technology and equipment[J]. Coal Science and Technology,2016,44(6):146-151. [3] 张富凯,孙一冉,孙君顶,等. 矿井智能通风系统关键技术研究[J]. 煤矿安全,2023,54(2):46-53.ZHANG Fukai,SUN Yiran,SUN Junding,et al. Research on key technologies of mine intelligent ventilation system[J]. Safety in Coal Mines,2023,54(2):46-53. [4] 程晓之,王凯,郝海清,等. 矿井局部通风智能调控系统及关键技术研究[J]. 工矿自动化,2021,47(9):18-24.CHENG Xiaozhi,WANG Kai,HAO Haiqing,et al. Research on intelligent regulation and control system and key technology of mine local ventilation[J]. Industry and Mine Automation,2021,47(9):18-24. [5] 刘剑. 矿井智能通风关键科学技术问题综述[J]. 煤矿安全,2020,51(10):108-111,117.LIU Jian. Overview on key scientific and technical issues of mine intelligent ventilation[J]. Safety in Coal Mines,2020,51(10):108-111,117. [6] 邵良杉,于保才,陈晓永. 矿井智能通风关键技术[J]. 煤矿安全,2020,51(11):121-124.SHAO Liangshan,YU Baocai,CHEN Xiaoyong. Key technology of mine intelligent ventilation[J]. Safety in Coal Mines,2020,51(11):121-124. [7] 徐新坤. 煤矿用机械叶片式风速表测量准确度的影响因素[J]. 煤炭与化工,2016,39(5):136-137,140.XU Xinkun. Influencing factor of the accuracy of mine mechanic blade type anemometer[J]. Coal and Chemical Industry,2016,39(5):136-137,140. [8] 蒋泽,郝叶军,刘炎. 一种矿用皮托管式风速传感器设计[J]. 工矿自动化,2012,38(11):61-63.JIANG Ze,HAO Yejun,LIU Yan. Design of a mine-used air speed sensor based on pitot tube[J]. Industry and Mine Automation,2012,38(11):61-63. [9] 宋涛,王建文,吴奉亮,等. 基于超声波全断面测风的矿井风网实时解算方法[J]. 工矿自动化,2022,48(4):114-120,141.SONG Tao,WANG Jianwen,WU Fengliang,et al. Real-time calculation method of mine ventilation network based on ultrasonic full-section wind measurement[J]. Journal of Mine Automation,2022,48(4):114-120,141. [10] 卢新明,尹红. 矿井通风智能化理论与技术[J]. 煤炭学报,2020,45(6):2236-2247.LU Xinming,YIN Hong. The intelligent theory and technology of mine ventilation[J]. Journal of China Coal Society,2020,45(6):2236-2247. [11] 游青山. 一种矿用超声波风速传感器的设计[J]. 煤矿安全,2017,48(1):88-91.YOU Qingshan. Design for an mine-used ultrasonic air velocity sensor[J]. Safety in Coal Mines,2017,48(1):88-91. [12] 黄吉葵. 高精度超声波风速风向仪测量系统设计与实现[D]. 成都:电子科技大学,2019.HUANG Jikui. Design and implementation of high precision ultrasonic anemometer measuring system[D]. Chengdu:University of Electronic Science and Technology of China,2019. [13] 刘华欣. 基于超声波传感器的风速风向测量研究[J]. 仪表技术与传感器,2018(12):101-104,110.LIU Huaxin. Research on wind speed and direction measurement based on ultrasonic sensor[J]. Instrument Technique and Sensor,2018(12):101-104,110. [14] 褚卫华,顾正华. 风洞超声波风速风向三维测量装置设计与实现[J]. 自动化与仪器仪表,2023(1):36-41,47.CHU Weihua,GU Zhenghua. Development of ultrasonic three-dimensional wind speed and direction measuring device for wind tunnel[J]. Automation & Instrumentation,2023(1):36-41,47. [15] 楚航,赵佳佳. 基于STM32F4的超声波测风速风向仪的设计[J]. 自动化技术与应用,2017,36(7):133-136.CHU Hang,ZHAO Jiajia. Design of ultrasonic measuring wind speed and direction instrument based on STM32F4[J]. Techniques of Automation and Applications,2017,36(7):133-136. [16] 罗永豪. 巷道断面风速分布与煤矿通风系统实时诊断理论研究[D]. 太原:太原理工大学,2015.LUO Yonghao. Theoretical study on wind velocity distribution in the section of roadway and real time diagnostics on mine ventilation systems[D]. Taiyuan:Taiyuan University of Technology,2015. [17] 冉霞,游青山. 基于时差法的矿用超声波风速传感器[J]. 煤矿安全,2015,46(7):116-119.RAN Xia,YOU Qingshan. Mine-used ultrasonic air velocity sensor based on time difference method[J]. Safety in Coal Mines,2015,46(7):116-119. [18] 李秉芮,刘娜,井上雅弘. 高精度矿用超声波风速测量仪设计[J]. 工矿自动化,2022,48(2):119-124.LI Bingrui,LIU Na,MASAHIRO Inoue. Design of high precision mine ultrasonic anemometer[J]. Industry and Mine Automation,2022,48(2):119-124. [19] 丁向辉,李平. 基于FPGA和DSP的超声波风向风速测量系统[J]. 应用声学,2011,30(1):46-52.DING Xianghui,LI Ping. An ultrasonic anemometer based on DSP and FPGA[J]. Applied Acoustics,2011,30(1):46-52. [20] SHAN Zebiao,XIE Xiaoran,LIU Xiaosong. Wind speed and direction measurement based on three mutually transmitting ultrasonic sensors[J]. IEEE Geoscience and Remote Sensing Letters,2023,20:1-5. [21] ZHAO Chen,CHEN Zezong,LI Jian,et al. Wind direction estimation using small-aperture HF radar based on a circular array[J]. IEEE Transactions on Geoscience and Remote Sensing,2020,58(4):2745-2754. doi: 10.1109/TGRS.2019.2955077