留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

矿用对射式风速风向传感器设计

安赛 赵忠辉 张浪 李伟 彭然

安赛,赵忠辉,张浪,等. 矿用对射式风速风向传感器设计[J]. 工矿自动化,2024,50(4):50-54.  doi: 10.13272/j.issn.1671-251x.2024010055
引用本文: 安赛,赵忠辉,张浪,等. 矿用对射式风速风向传感器设计[J]. 工矿自动化,2024,50(4):50-54.  doi: 10.13272/j.issn.1671-251x.2024010055
AN Sai, ZHAO Zhonghui, ZHANG Lang, et al. Design of mine opposed wind speed and direction sensor[J]. Journal of Mine Automation,2024,50(4):50-54.  doi: 10.13272/j.issn.1671-251x.2024010055
Citation: AN Sai, ZHAO Zhonghui, ZHANG Lang, et al. Design of mine opposed wind speed and direction sensor[J]. Journal of Mine Automation,2024,50(4):50-54.  doi: 10.13272/j.issn.1671-251x.2024010055

矿用对射式风速风向传感器设计

doi: 10.13272/j.issn.1671-251x.2024010055
基金项目: 国家自然科学基金重点项目(52130409);煤科院技术创新基金项目(2022CX-I-10,2023CX-Ⅱ-15)。
详细信息
    作者简介:

    安赛(1987—),男,河北保定人,副研究员,硕士,主要从事矿井智能通风设备研发工作,E-mail:670405696@qq.com

  • 中图分类号: TD723

Design of mine opposed wind speed and direction sensor

  • 摘要: 针对目前风速传感器启动风速高、设计方案复杂、无法准确测量巷道整个断面平均风速的问题,基于超声波对射式测风原理,设计了以STM32为核心的矿用对射式风速风向传感器,介绍了传感器总体结构、收发电路设计、滤波算法及软件流程。该传感器改变了以点带面的测风方式,通过大距离(5~12 m)超声测风技术测量巷道中线风速,以该风速代表整个巷道的平均风速,提高了巷道风速测量的准确性和实时性。依据设计方案研发了测试样机,在环形风洞中的测试结果表明,该传感器测量值与风速标准值在0.1~15 m/s内具有较好的一致性,测量误差小于0.1 m/s,能够满足智能化矿井对巷道风速测量精度的要求。

     

  • 图  1  对射式风速风向传感器测量原理

    Figure  1.  The measurement principle of opposed wind speed and direction sensor

    图  2  对射式风速风向传感器结构

    Figure  2.  The structure of opposed wind speed and direction sensor

    图  3  超声波发射及通道选择电路

    Figure  3.  Ultrasonic emission and channel selection circuit

    图  4  超声波接收及动态放大电路

    Figure  4.  Ultrasonic receiving and dynamic amplification circuit

    图  5  系统软件流程

    Figure  5.  System software flow

    图  6  环形风洞

    Figure  6.  Circular wind tunnel

    表  1  传感器测试结果

    Table  1.   Sensor test results m/s

    风速
    标准值
    风速
    测量值
    误差 风速
    标准值
    风速
    测量值
    误差
    0 0.01 −0.01 5.96 5.99 −0.03
    0.16 0.15 0.01 7.05 7.01 0.04
    0.24 0.23 0.01 7.97 8.04 −0.07
    0.44 0.42 0.02 9.07 9.14 −0.07
    0.72 0.71 0.01 10.25 10.28 −0.03
    0.96 0.94 0.02 12.09 12.11 −0.02
    1.96 1.89 0.07 15.13 15.14 −0.01
    2.98 2.98 0 20.11 20.12 −0.01
    3.94 3.96 −0.02 25.10 25.96 −0.86
    4.95 5.07 −0.12
    下载: 导出CSV
  • [1] 周福宝,辛海会,魏连江,等. 矿井智能通风理论与技术研究进展[J]. 煤炭科学技术,2023,51(1):313-328.

    ZHOU Fubao,XIN Haihui,WEI Lianjiang,et al. Research progress of mine intelligent ventilation theory and technology[J]. Coal Science and Technology,2023,51(1):313-328.
    [2] 张庆华. 我国煤矿通风技术与装备发展现状及展望[J]. 煤炭科学技术,2016,44(6):146-151.

    ZHANG Qinghua. Development and prospect of mine ventilation technology and equipment[J]. Coal Science and Technology,2016,44(6):146-151.
    [3] 张富凯,孙一冉,孙君顶,等. 矿井智能通风系统关键技术研究[J]. 煤矿安全,2023,54(2):46-53.

    ZHANG Fukai,SUN Yiran,SUN Junding,et al. Research on key technologies of mine intelligent ventilation system[J]. Safety in Coal Mines,2023,54(2):46-53.
    [4] 程晓之,王凯,郝海清,等. 矿井局部通风智能调控系统及关键技术研究[J]. 工矿自动化,2021,47(9):18-24.

    CHENG Xiaozhi,WANG Kai,HAO Haiqing,et al. Research on intelligent regulation and control system and key technology of mine local ventilation[J]. Industry and Mine Automation,2021,47(9):18-24.
    [5] 刘剑. 矿井智能通风关键科学技术问题综述[J]. 煤矿安全,2020,51(10):108-111,117.

    LIU Jian. Overview on key scientific and technical issues of mine intelligent ventilation[J]. Safety in Coal Mines,2020,51(10):108-111,117.
    [6] 邵良杉,于保才,陈晓永. 矿井智能通风关键技术[J]. 煤矿安全,2020,51(11):121-124.

    SHAO Liangshan,YU Baocai,CHEN Xiaoyong. Key technology of mine intelligent ventilation[J]. Safety in Coal Mines,2020,51(11):121-124.
    [7] 徐新坤. 煤矿用机械叶片式风速表测量准确度的影响因素[J]. 煤炭与化工,2016,39(5):136-137,140.

    XU Xinkun. Influencing factor of the accuracy of mine mechanic blade type anemometer[J]. Coal and Chemical Industry,2016,39(5):136-137,140.
    [8] 蒋泽,郝叶军,刘炎. 一种矿用皮托管式风速传感器设计[J]. 工矿自动化,2012,38(11):61-63.

    JIANG Ze,HAO Yejun,LIU Yan. Design of a mine-used air speed sensor based on pitot tube[J]. Industry and Mine Automation,2012,38(11):61-63.
    [9] 宋涛,王建文,吴奉亮,等. 基于超声波全断面测风的矿井风网实时解算方法[J]. 工矿自动化,2022,48(4):114-120,141.

    SONG Tao,WANG Jianwen,WU Fengliang,et al. Real-time calculation method of mine ventilation network based on ultrasonic full-section wind measurement[J]. Journal of Mine Automation,2022,48(4):114-120,141.
    [10] 卢新明,尹红. 矿井通风智能化理论与技术[J]. 煤炭学报,2020,45(6):2236-2247.

    LU Xinming,YIN Hong. The intelligent theory and technology of mine ventilation[J]. Journal of China Coal Society,2020,45(6):2236-2247.
    [11] 游青山. 一种矿用超声波风速传感器的设计[J]. 煤矿安全,2017,48(1):88-91.

    YOU Qingshan. Design for an mine-used ultrasonic air velocity sensor[J]. Safety in Coal Mines,2017,48(1):88-91.
    [12] 黄吉葵. 高精度超声波风速风向仪测量系统设计与实现[D]. 成都:电子科技大学,2019.

    HUANG Jikui. Design and implementation of high precision ultrasonic anemometer measuring system[D]. Chengdu:University of Electronic Science and Technology of China,2019.
    [13] 刘华欣. 基于超声波传感器的风速风向测量研究[J]. 仪表技术与传感器,2018(12):101-104,110.

    LIU Huaxin. Research on wind speed and direction measurement based on ultrasonic sensor[J]. Instrument Technique and Sensor,2018(12):101-104,110.
    [14] 褚卫华,顾正华. 风洞超声波风速风向三维测量装置设计与实现[J]. 自动化与仪器仪表,2023(1):36-41,47.

    CHU Weihua,GU Zhenghua. Development of ultrasonic three-dimensional wind speed and direction measuring device for wind tunnel[J]. Automation & Instrumentation,2023(1):36-41,47.
    [15] 楚航,赵佳佳. 基于STM32F4的超声波测风速风向仪的设计[J]. 自动化技术与应用,2017,36(7):133-136.

    CHU Hang,ZHAO Jiajia. Design of ultrasonic measuring wind speed and direction instrument based on STM32F4[J]. Techniques of Automation and Applications,2017,36(7):133-136.
    [16] 罗永豪. 巷道断面风速分布与煤矿通风系统实时诊断理论研究[D]. 太原:太原理工大学,2015.

    LUO Yonghao. Theoretical study on wind velocity distribution in the section of roadway and real time diagnostics on mine ventilation systems[D]. Taiyuan:Taiyuan University of Technology,2015.
    [17] 冉霞,游青山. 基于时差法的矿用超声波风速传感器[J]. 煤矿安全,2015,46(7):116-119.

    RAN Xia,YOU Qingshan. Mine-used ultrasonic air velocity sensor based on time difference method[J]. Safety in Coal Mines,2015,46(7):116-119.
    [18] 李秉芮,刘娜,井上雅弘. 高精度矿用超声波风速测量仪设计[J]. 工矿自动化,2022,48(2):119-124.

    LI Bingrui,LIU Na,MASAHIRO Inoue. Design of high precision mine ultrasonic anemometer[J]. Industry and Mine Automation,2022,48(2):119-124.
    [19] 丁向辉,李平. 基于FPGA和DSP的超声波风向风速测量系统[J]. 应用声学,2011,30(1):46-52.

    DING Xianghui,LI Ping. An ultrasonic anemometer based on DSP and FPGA[J]. Applied Acoustics,2011,30(1):46-52.
    [20] SHAN Zebiao,XIE Xiaoran,LIU Xiaosong. Wind speed and direction measurement based on three mutually transmitting ultrasonic sensors[J]. IEEE Geoscience and Remote Sensing Letters,2023,20:1-5.
    [21] ZHAO Chen,CHEN Zezong,LI Jian,et al. Wind direction estimation using small-aperture HF radar based on a circular array[J]. IEEE Transactions on Geoscience and Remote Sensing,2020,58(4):2745-2754. doi: 10.1109/TGRS.2019.2955077
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  143
  • HTML全文浏览量:  31
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-18
  • 修回日期:  2024-03-21
  • 网络出版日期:  2024-05-10

目录

    /

    返回文章
    返回