留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

甜水堡煤矿煤巷支护参数与设备工艺优化研究

孟键 朱长华 牛志军 王旭锋 吕昊

孟键,朱长华,牛志军,等. 甜水堡煤矿煤巷支护参数与设备工艺优化研究[J]. 工矿自动化,2024,50(3):151-159.  doi: 10.13272/j.issn.1671-251x.2024010016
引用本文: 孟键,朱长华,牛志军,等. 甜水堡煤矿煤巷支护参数与设备工艺优化研究[J]. 工矿自动化,2024,50(3):151-159.  doi: 10.13272/j.issn.1671-251x.2024010016
MENG Jian, ZHU Changhua, NIU Zhijun, et al. Research on optimization of coal roadway support parameters and equipment technology in Tianshuibao Coal Mine[J]. Journal of Mine Automation,2024,50(3):151-159.  doi: 10.13272/j.issn.1671-251x.2024010016
Citation: MENG Jian, ZHU Changhua, NIU Zhijun, et al. Research on optimization of coal roadway support parameters and equipment technology in Tianshuibao Coal Mine[J]. Journal of Mine Automation,2024,50(3):151-159.  doi: 10.13272/j.issn.1671-251x.2024010016

甜水堡煤矿煤巷支护参数与设备工艺优化研究

doi: 10.13272/j.issn.1671-251x.2024010016
基金项目: 炼焦煤资源绿色开发全国重点实验室开放课题项目(41040220181107)。
详细信息
    作者简介:

    孟键(1974—),男,安徽淮北人,高级工程师,主要从事煤矿开采、通风瓦斯治理及冲击地压防治技术管理工作,E-mail:1154402590@qq.com

  • 中图分类号: TD353

Research on optimization of coal roadway support parameters and equipment technology in Tianshuibao Coal Mine

  • 摘要: 目前巷道快速掘进技术研究主要针对巷道快速掘进的影响因素、设备优化等,对巷道空顶距、支护参数、施工工艺联合优化的研究较少。针对该问题,以甘肃省环县甜水堡煤矿2号井1309工作面回风巷为研究对象,对煤巷支护参数与设备工艺优化方法进行研究。分析了巷道掘进各工序的用时特征,得出掘进、永久支护、临时支护用时最多,占比分别为25.3%,49.9%,6.2%;以耗时最长的3个工序为重点优化方向,构建了掘进工作面空顶区顶板力学模型,得出掘进工作面理论最大空顶距为2.32 m,考虑现场受设备、地质、工艺等因素影响,确定空顶距为2.0 m;根据不同支护方案下巷道围岩应力、变形、塑性区的分布特征,结合巷道高效掘进需求,确定最佳锚杆间排距为800 mm×1 000 mm。结合巷道实际的地质条件,配套优化了掘进设备、临时支护工艺与施工工艺。现场试验结果表明,优化后最大日进尺由8 m提高到10 m,巷道掘进速度提高了25%;巷道围岩变形基本处于稳定状态,最大变形量为226 mm。优化方案不仅保证了巷道的安全稳定,还显著提高了巷道的掘进速度。

     

  • 图  1  1309工作面回风巷综合柱状图

    Figure  1.  Comprehensive bar chart of return airway in 1309 working face

    图  2  不同工序用时占比

    Figure  2.  The proportion of time spent on different processes

    图  3  1309工作面回风巷支护断面

    Figure  3.  Support section of return airway in 1309 working face

    图  4  掘进工作面空顶区顶板力学模型

    Figure  4.  Mechanical model of the roof in goaf area of excavation face

    图  5  1309工作面回风巷数值计算模型

    Figure  5.  Numerical calculation model of return airway in 1309 working face

    图  6  巷道围岩应力分布曲线

    Figure  6.  Stress distribution curves of roadway surrounding rock

    图  7  巷道围岩位移分布曲线

    Figure  7.  Distribution curves of displacement of roadway surrounding rock

    图  8  巷道围岩塑性区分布特征

    Figure  8.  Distribution features of plastic zone in roadway surrounding rock

    图  9  EBZ220B悬臂式掘进机

    Figure  9.  EBZ220B boom-type roadheader

    图  10  巷道顶板锚杆(索)支护展开图

    Figure  10.  Expansion diagram of roadway roof support by anchor rod and cable

    图  11  EBZ−220B机载临时支护装置及其布置

    Figure  11.  EBZ220B airborne temporary support device and layout

    图  12  巷道围岩位移测点布置

    Figure  12.  Layout of displacement measurement points for roadway surrounding rock

    图  13  巷道围岩变形特征

    Figure  13.  Deformation features of surrounding rock in roadways

    图  14  巷道现场变形情况

    Figure  14.  Deformation situation at the roadway site

    表  1  数值计算模型中煤岩体物理力学参数

    Table  1.   Physical and mechanical parameters of coal rock in numerical calculation model

    岩层 厚度/m 密度/(kg·m−3 体积模量/GPa 剪切模量/GPa 黏聚力/MPa 内摩擦角/(°) 抗拉强度/MPa
    泥岩 2.80 2 480 5.46 3.49 3.42 28.4 2.63
    中粒砂岩 2.61 2 600 5.68 3.71 3.23 30.2 2.59
    砂质泥岩1 4.59 2 500 9.06 8.01 6.15 31 3.35
    细粒砂岩1 3.48 2 720 11.21 6.75 15.73 39 3.57
    3号煤 2.88 1 350 1.21 0.72 1.16 17 1.46
    砂质泥岩2 2.68 2 540 9.45 8.81 6.52 26 3.42
    细粒砂岩2 2.69 2 700 15.64 10.28 7.47 34.6 5.46
    砂质泥岩3 2.06 2 490 8.47 7.04 5.32 29 3.46
    粗粒砂岩 3.60 2 760 22.46 9.13 11.43 32 2.38
    下载: 导出CSV

    表  2  模拟支护方案

    Table  2.   Different support simulation schemes

    方案编号 顶锚杆间排距/(mm×mm) 帮锚杆间排距/(mm×mm)
    1 800×800 800×800
    2 800×900 800×900
    3 800×1 000 800×1 000
    4 900×900 900×900
    5 900×1 000 900×1 000
    6 1 000×1 000 1 000×1 000
    下载: 导出CSV
  • [1] 康红普,姜鹏飞,刘畅. 煤巷智能快速掘进技术与装备的发展方向[J]. 采矿与岩层控制工程学报,2023,5(2):5-7.

    KANG Hongpu,JIANG Pengfei,LIU Chang. Development of intelligent rapid excavation technology and equipment for coal mine roadways[J]. Journal of Mining and Strata Control Engineering,2023,5(2):5-7.
    [2] 康红普,伊康. 深部软岩巷道围岩扩容与流变特性模拟研究及应用[J]. 煤炭学报,2023,48(1):15-33.

    KANG Hongpu,YI Kang. Simulation study on dilatant and rheologic properties of soft rocks surrounding deep roadway and its application[J]. Journal of China Coal Society,2023,48(1):15-33.
    [3] 张忠国. 煤巷快速掘进系统的发展趋势与关键技术[J]. 煤炭科学技术,2016,44(1):55-60.

    ZHANG Zhongguo. Development tendency and key technology of mine seam gateway rapid driving system[J]. Coal Science and Technology,2016,44(1):55-60.
    [4] 康红普,姜鹏飞,高富强,等. 掘进工作面围岩稳定性分析及快速成巷技术途径[J]. 煤炭学报,2021,46(7):2023-2045.

    KANG Hongpu,JIANG Pengfei,GAO Fuqiang,et al. Analysis on stability of rock surrounding heading faces and technical approaches for rapid heading[J]. Journal of China Coal Society,2021,46(7):2023-2045.
    [5] 康红普. 我国煤矿巷道围岩控制技术发展70年及展望[J]. 岩石力学与工程学报,2021,40(1):1-30.

    KANG Hongpu. Seventy years development and prospects of strata control technologies for coal mine roadways in China[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(1):1-30.
    [6] 王虹,王建利,张小峰. 掘锚一体化高效掘进理论与技术[J]. 煤炭学报,2020,45(6):2021-2030.

    WANG Hong,WANG Jianli,ZHANG Xiaofeng. Theory and technology of efficient roadway advance with driving and bolting integration[J]. Journal of China Coal Society,2020,45(6):2021-2030.
    [7] 罗文,杨俊彩. 神东矿区快速掘进装备与技术研究现状及展望[J]. 工矿自动化,2021,47(增刊2):32-38.

    LUO Wen,YANG Juncai. Research status and prospects on rapid tunneling equipment and technology in Shendong mining area[J]. Industry and Mine Automation,2021,47(S2):32-38.
    [8] 高宇,刘佳. 基于人机关系的煤巷掘进作业优化[J]. 工矿自动化,2023,49(5):147-152.

    GAO Yu,LIU Jia. Optimization of coal roadway heading operation based on human-machine relationship[J]. Journal of Mine Automation,2023,49(5):147-152.
    [9] 丁震. 我国煤巷掘进装备现状及发展趋势[J]. 工矿自动化,2014,40(4):23-27.

    DING Zhen. Status and development trend of tunneling equipments of coal drift in China[J]. Industry and Mine Automation,2014,40(4):23-27.
    [10] 刘畅,姜鹏飞,王子越,等. 煤巷快速成巷技术现状及应用效果评价方法研究[J]. 煤炭科学技术,2020,48(11):26-33.

    LIU Chang,JIANG Pengfei,WANG Ziyue,et al. Research on current situation of rapid driving technology in coal roadway and its assessment method of application effect[J]. Coal Science and Technology,2020,48(11):26-33.
    [11] 张东宝. 煤巷智能快速掘进技术发展现状与关键技术[J]. 煤炭工程,2018,50(5):56-59.

    ZHANG Dongbao. Development status and key technology of intelligent rapid driving technology in coal seam roadway[J]. Coal Engineering,2018,50(5):56-59.
    [12] 康红普,王金华,高富强. 掘进工作面围岩应力分布特征及其与支护的关系[J]. 煤炭学报,2009,34(12):1585-1593.

    KANG Hongpu,WANG Jinhua,GAO Fuqiang. Stress distribution characteristics in rock surrounding heading face and its relationship with supporting[J]. Journal of China Coal Society,2009,34(12):1585-1593.
    [13] KANG Hongpu,WU Le,GAO Fuqiang,et al. Field study on the load transfer mechanics associated with longwall coal retreat mining[J]. International Journal of Rock Mechanics and Mining Sciences,2019,124. DOI: 10.1016/j.ijrmms.2019.104141.
    [14] 王国法,任怀伟,赵国瑞,等. 煤矿智能化十大“痛点”解析及对策[J]. 工矿自动化,2021,47(6):1-11.

    WANG Guofa,REN Huaiwei,ZHAO Guorui,et al. Analysis and counter measures of ten 'pain points' of intelligent coal mine[J]. Industry and Mine Automation,2021,47(6):1-11.
    [15] 王步康. 煤矿巷道掘进技术与装备的现状及趋势分析[J]. 煤炭科学技术,2020,48(11):1-11.

    WANG Bukang. Current status and trend analysis of readway driving technology and equipment in coal mine[J]. Coal Science and Technology,2020,48(11):1-11.
    [16] 程建远,陆自清,蒋必辞,等. 煤矿巷道快速掘进的“长掘长探”技术[J]. 煤炭学报,2022,47(1):404-412.

    CHENG Jianyuan,LU Ziqing,JIANG Bici,et al. A novel technology of "long excavation/long detection" for rapid excavation in coal mine roadway[J]. Journal of China Coal Society,2022,47(1):404-412.
    [17] 柏建彪,肖同强,李磊. 巷道掘进空顶距确定的差分方法及其应用[J]. 煤炭学报,2011,36(6):920-924.

    BAI Jianbiao,XIAO Tongqiang,LI Lei. Unsupported roof distance determination of roadway excavation using difference method and its application[J]. Journal of China Coal Society,2011,36(6):920-924.
    [18] 马睿. 巷道快速掘进空顶区顶板破坏机理及稳定性控制[D]. 徐州:中国矿业大学,2016.

    MA Rui. Failure mechanism and stability control of empty roof in roadway rapid excavation[D]. Xuzhou:China University of Mining and Technology,2016.
    [19] 吴拥政,吴建星,王峰. 巷道掘支锚连续平行作业机理及其应用[J]. 煤炭科学技术,2016,44(6):39-44.

    WU Yongzheng,WU Jianxing,WANG Feng. Mechanism and application of excavation,support and bolting continuous parallel operation in roadway[J]. Coal Science and Technology,2016,44(6):39-44.
    [20] 卓军,范凯,刘少伟,等. 弱黏结复合顶板巷道快速掘进支护关键技术与装备[J]. 煤炭技术,2022,41(3):80-82.

    ZHUO Jun,FAN Kai,LIU Shaowei,et al. Key technology and equipment of fast driving and supporting in weak bond compound roof roadway[J]. Coal Technology,2022,41(3):80-82.
    [21] 董庆,蔡志炯,赵洪. 掘锚一体机在特厚煤层大断面回采巷道支护中的应用[J]. 煤炭工程,2018,50(12):35-40.

    DONG Qing,CAI Zhijiong,ZHAO Hong. Application study on support technology for gateway of large section in extremely thick coal seam using intellectualized driving and anchor machine[J]. Coal Engineering,2018,50(12):35-40.
    [22] 郭俊生,李玉岐,谢苗. 单巷快速掘进技术在斜沟煤矿的应用[J]. 煤矿安全,2021,52(6):123-128.

    GUO Junsheng,LI Yuqi,XIE Miao. Application of single lane rapid driving technology in Xiegou Coal Mine[J]. Safety in Coal Mines,2021,52(6):123-128.
    [23] 陈宇,张洋,耿继业,等. 高应力煤巷掘锚护一体化快速掘进工序优化与支护技术[J]. 煤矿安全,2019,50(7):120-123.

    CHEN Yu,ZHANG Yang,GENG Jiye,et al. Procedure optimization and support technology of tunneling-anchoring-shielding integration speedy drivage for high stress coal roadway[J]. Safety in Coal Mines,2019,50(7):120-123.
    [24] 陈大广. 掘锚一体化巷道支护参数分析与工序优化[J]. 煤矿安全,2017,48(10):224-227,231.

    CHEN Daguang. Roadway supporting parameters analysis and process optimization for excavation and bolting integration[J]. Safety in Coal Mines,2017,48(10):224-227,231.
    [25] 孙立虎,王敏,于冰冰,等. 大倾角倒梯形煤巷新型配套快速掘进技术研究[J]. 煤炭工程,2023,55(11):49-55.

    SUN Lihu,WANG Min,YU Bingbing,et al. A new rapid excavation technology of large dip angle inverted trapezoidal coal roadway[J]. Coal Engineering,2023,55(11):49-55.
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  100
  • HTML全文浏览量:  39
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-08
  • 修回日期:  2024-03-20
  • 网络出版日期:  2024-04-11

目录

    /

    返回文章
    返回