留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤矿井下爆炸性环境下电磁波热效应的安全性研究

郭波超 田子建 侯明硕 石洋名 杨维

郭波超,田子建,侯明硕,等. 煤矿井下爆炸性环境下电磁波热效应的安全性研究[J]. 工矿自动化,2024,50(3):108-113.  doi: 10.13272/j.issn.1671-251x.2023120069
引用本文: 郭波超,田子建,侯明硕,等. 煤矿井下爆炸性环境下电磁波热效应的安全性研究[J]. 工矿自动化,2024,50(3):108-113.  doi: 10.13272/j.issn.1671-251x.2023120069
GUO Bochao, TIAN Zijian, HOU Mingshuo, et al. Research on safety of electromagnetic wave thermal effect in explosive environment of underground coal mine[J]. Journal of Mine Automation,2024,50(3):108-113.  doi: 10.13272/j.issn.1671-251x.2023120069
Citation: GUO Bochao, TIAN Zijian, HOU Mingshuo, et al. Research on safety of electromagnetic wave thermal effect in explosive environment of underground coal mine[J]. Journal of Mine Automation,2024,50(3):108-113.  doi: 10.13272/j.issn.1671-251x.2023120069

煤矿井下爆炸性环境下电磁波热效应的安全性研究

doi: 10.13272/j.issn.1671-251x.2023120069
基金项目: 国家自然科学基金资助项目(52074305)。
详细信息
    作者简介:

    郭波超(1993—),男,河北邯郸人,博士研究生,研究方向为无线电能传输,E-mail:guobochao1@163.com

    通讯作者:

    田子建(1964—),男,湖南望城人,教授,博士,博士研究生导师,主要研究方向为矿井监控与通信,E-mail:tianzj0726@126.com

  • 中图分类号: TD655

Research on safety of electromagnetic wave thermal effect in explosive environment of underground coal mine

  • 摘要: GB/T 3836.1—2021《爆炸性环境 第1部分:设备 通用要求》规定爆炸性环境中射频设备的阈功率不得大于6 W,该规定限制了大功率射频设备在煤矿井下的应用,而现有针对爆炸性环境电磁安全性的相关研究缺乏完善的理论分析和实验验证。针对上述问题,推导了电磁波热效应方程,分析得出影响电磁波耦合瓦斯和煤尘混合气体产生热能的可控参数为电磁波耦合时间、电场强度和电磁波频率。以GB/T 3836.1—2021中可能堆积煤尘的电气设备表面温度最高不能超过150 ℃的规定为依据,采用多物理场仿真软件COMSOL对不同发射功率的电磁波耦合瓦斯和煤尘混合气体的热效应安全性进行了仿真实验,结果表明:满足温度不超过150 ℃的电磁波热效应安全阈发射功率为16.48 W; 随着电磁波发射功率的增加,电磁波热效应安全时长(电磁波耦合瓦斯和煤尘混合气体产生的热能不会使环境温度超过150 ℃对应的时间段)逐渐减少,但只要在安全时长内,电磁波的发射功率不受限制。

     

  • 图  1  电磁波热效应仿真模型

    Figure  1.  Simulation model of electromagnetic thermal effect

    图  2  电磁波热效应安全阈发射功率仿真结果

    Figure  2.  Simulation results of safe threshold transmitting power of electromagnetic wave thermal effect

    图  3  不同发射功率的电磁波热效应仿真结果

    Figure  3.  Simulation results of electromagnetic wave thermal effect with different transmission powers

    表  1  仿真模型几何参数

    Table  1.   Geometric parameters of simulation model

    参数 L1 W1 H1 L2 W2 H2
    值/cm 30 70 70 30 60 60
    下载: 导出CSV

    表  2  瓦斯的电学性质参数

    Table  2.   Electrical property parameters of gas

    参数值来源 电导率/(10−5 S·m−1 介电常数/(F·m−1
    文献[16] 0.77~5.57
    文献[17] 0.25~0.80
    文献[18] 4.70~7.30
    文献[19] 3.57~4.54
    文献[20] 8.33~1.10
    下载: 导出CSV

    表  3  煤尘的电学性质参数

    Table  3.   Electrical property parameters of coal dust

    参数值来源 电导率/(10−3 S·m−1 介电常数/(F·m−1
    文献[21] 0.185~0.926 119.28~326.65
    0.209~0.730 5.74~15.28
    0.039~0.052 10.59~24.01
    0.086~0.312 77.30~263.47
    文献[22] 1.25~1.66 500~540
    2.50~2.60 490~522
    2.50~2.60 485~518
    下载: 导出CSV

    表  4  瓦斯的热学性质参数

    Table  4.   Thermal property parameters of gas

    参数值来源 导热系数/(W·m−1·K−1 恒压热容/ (J·kg−1·K−1
    文献[23] 0.2~1.8
    文献[24] 0.022 2 570
    下载: 导出CSV

    表  5  煤尘的热学性质参数

    Table  5.   Thermal property parameters of coal dust

    参数值来源 密度/
    (kg·m−3
    导热系数/
    (W·m−1·K−1
    热膨胀系数/
    K−1
    恒压热容/
    (J·kg−1·K−1
    文献[14] 1 263 0.478 1 000
    文献[25] 1 846 1.215 0.000 12 1 200
    下载: 导出CSV

    表  6  瓦斯和煤尘的电热学性质参数

    Table  6.   Electrothermal property parameters of gas and coal dust

    参数 瓦斯 煤尘
    电导率/(S·m−1 1.1 2.6×10−3
    介电常数/(F·m−1 5.57 522
    密度/(kg·m−3 1 846
    导热系数/(W·m−1·K−1 0.022 1.215
    热膨胀系数/K−1 0.000 12
    恒压热容/ (J·kg−1·K−1 2570 1 200
    下载: 导出CSV
  • [1] GB/T 3836.1—2021 爆炸性环境 第1部分:设备 通用要求[S].

    GB/T 3836.1-2021 Explosive atmospheres-Part 1:Equipment-General requirements[S].
    [2] 孙继平,彭铭,潘涛,等. 无线电波防爆安全阈值研究[J]. 工矿自动化,2023,49(2):1-5.

    SUN Jiping,PENG Ming,PAN Tao,et al. Research on the safety threshold of radio wave explosion-proof[J]. Journal of Mine Automation,2023,49(2):1-5.
    [3] 梁伟锋,孙继平,彭铭,等. 煤矿井下无线电波防爆安全功率阈值研究[J]. 工矿自动化,2022,48(12):123-128,163.

    LIANG Weifeng,SUN Jiping,PENG Ming,et al. Research on safe power threshold of radio wave explosion-proof in coal mine[J]. Journal of Mine Automation,2022,48(12):123-128,163.
    [4] 田子建,降滉舟,常琳,等. 半波振子结构在井下5G辐射场中的安全性分析[J]. 工矿自动化,2023,49(6):159-167.

    TIAN Zijian,JIANG Huangzhou,CHANG Lin,et al. Safety analysis of half wave oscillator structure in underground 5G radiation field[J]. Journal of Mine Automation,2023,49(6):159-167.
    [5] 刘晓阳,马新彦,刘坤,等. 矿井5G电磁波辐射能量安全性研究[J]. 工矿自动化,2021,47(7):85-91.

    LIU Xiaoyang,MA Xinyan,LIU Kun,et al. Research on the safety of 5G electromagnetic wave radiation energy in coal mine[J]. Industry and Mine Automation,2021,47(7):85-91.
    [6] 刘晓阳,马新彦,田子建,等. 井下金属结构等效接收天线的放电火花安全性研究[J]. 工矿自动化,2021,47(9):126-130.

    LIU Xiaoyang,MA Xinyan,TIAN Zijian,et al. Research on discharge spark safety of equivalent receiving antenna of underground metal structure[J]. Industry and Mine Automation,2021,47(9):126-130.
    [7] 常琳,郑慧莹,李鸣. 煤矿5G通信系统的安全性研究[J]. 煤矿安全,2021,52(8):137-141,146.

    CHANG Lin,ZHENG Huiying,LI Ming. Research on safety of 5G communication system in coal mine[J]. Safety in Coal Mines,2021,52(8):137-141,146.
    [8] 范思涵,杨维,刘俊波. 井下金属结构近场耦合大环发射天线电磁波能量安全性分析[J]. 工矿自动化,2022,48(6):118-127.

    FAN Sihan,YANG Wei,LIU Junbo. Analysis of electromagnetic wave energy safety of underground metal structure near-field coupled large loop transmitting antenna[J]. Journal of Mine Automation,2022,48(6):118-127.
    [9] 范思涵,杨维,田子建. 井下柱状金属结构接收电磁波能量安全性分析[J/OL]. 煤炭科学技术:1-9[2023-12-22]. http://kns.cnki.net/kcms/detail/11.2402.TD.20231206.1855.003.html.

    FAN Sihan,YANG Wei,TIAN Zijian. Safety analysis of electromagnetic wave energy received by underground columnar metal structures[J/OL]. Coal Science and Technology:1-9[2023-12-22]. http://kns.cnki.net/kcms/detail/11.2402.TD.20231206.1855.003.html.
    [10] 伍颖. 煤矿井下电磁波远场辐射能量对瓦斯气体的安全性分析[D]. 北京:北京交通大学,2022.

    WU Ying. Safety analysis of electromagnetic wave far field radiation energy on gas in coal mine[D]. Beijing:Beijing Jiaotong University,2022.
    [11] 夏晨阳,庄裕海,卢振洲,等. 高瓦斯矿井无线供电系统安全容量研究[J]. 电工技术学报,2013,28(增刊2):71-74.

    XIA Chenyang,ZHUANG Yuhai,LU Zhenzhou,et al. Research of safety capability of wireless power supply system used in high gas mine[J]. Transactions of China Electrotechnical Society,2013,28(S2):71-74.
    [12] 孟积渐,陈永冉. 煤矿井下无线充电安全影响因素分析及对策[J]. 煤矿安全,2020,51(12):109-112.

    MENG Jijian,CHEN Yongran. Analysis of influencing factors of wireless charging safety in underground coal mine and countermeasures[J]. Safety in Coal Mines,2020,51(12):109-112.
    [13] GAO Jiancun,WANG Le,HU Shoutao,et al. The free radical mechanism of electromagnetic field affecting explosion of premixed methane[J]. Combustion and Flame,2021,234. DOI: 10.1016/j.combustflame.2021.111649.
    [14] SU Chang,ZHANG Yongli,YANG Xinle,et al. Numerical simulation of the temperature field of coal subjected to microwave directional heating[J]. IEEE Access,2020,8:45084-45095. doi: 10.1109/ACCESS.2020.2978213
    [15] 工业和信息化部. 工业和信息化部关于印发无线充电(电力传输)设备无线电管理暂行规定的通知[EB/OL]. [2023-10-22]. https://www.gov.cn/gongbao/2023/issue_10626/202308/content_6897062.html.

    Ministry of Industry and Information Technology. Notice of the Ministry of Industry and Information Technology on issuing Interim Regulations on Radio Management of Wireless Charging (Power Transmission) Equipment[EB/OL]. [2023-10-22]. https://www.gov.cn/gongbao/2023/issue_10626/202308/content_6897062.html.
    [16] MOLDOVER M R,BUCKLEY T J. Reference values of the dielectric constant of natural gas components determined with a cross capacitor[J]. International Journal of Thermophysics,2001,22(5):859-885.
    [17] SCHMIDT J W,MOLDOVER M R. Dielectric permittivity of eight gases measured with cross capacitors[J]. International Journal of Thermophysics,2003,24(2):375-403. doi: 10.1023/A:1022963720063
    [18] 孙敦帅. 抽采煤层瓦斯运移分布的电阻率动态响应特征研究[D]. 徐州:中国矿业大学,2023.

    SUN Dunshuai. Characterization of resistivity dynamic response of gas transport distribution in extracted coal seam[D]. Xuzhou:China University of Mining and Technology,2023.
    [19] 汤小燕,陈昕怡,郑雷清,等. 含瓦斯煤岩导电特性研究综述[J]. 科学技术与工程,2023,23(25):10617-10624.

    TANG Xiaoyan,CHEN Xinyi,ZHENG Leiqing,et al. Review and prospect of conductive characteristics of gas-containing coal rocks[J]. Science Technology and Engineering,2023,23(25):10617-10624.
    [20] 陈立,张英华,黄志安,等. 不同粒径煤吸附瓦斯过程中的热电效应[J]. 工程科学学报,2018,40(4):416-426.

    CHEN Li,ZHANG Yinghua,HUANG Zhi'an,et al. Thermoelectric effect in process of gas adsorption in different particle sizes of coal[J]. Chinese Journal of Engineering,2018,40(4):416-426.
    [21] 杨耸. 受载含瓦斯煤体电性参数的实验研究[D]. 焦作:河南理工大学,2012.

    YANG Song. Experimental study on the electrical parameters of being loaded gas-filled coal[D]. Jiaozuo:Henan Polytechnic University,2012.
    [22] 李祥春,张琪,安振兴,等. 不同煤体电性参数影响因素实验研究[J]. 中国矿业大学学报,2021,50(3):570-578.

    LI Xiangchun,ZHANG Qi,AN Zhenxing,et al. Experimental study of influencing factors of electrical parameters of different kinds of coal mass[J]. Journal of China University of Mining and Technology,2021,50(3):570-578.
    [23] GORODILOV B G,SUMAROKOV V V,JEŻOWSKI A,et al. Thermal conductivity of O2-and N2-doped solid CH4[J]. Journal of Low Temperature Physics,2001,122:187-193. doi: 10.1023/A:1004872011475
    [24] LIANG Zhi,TSAI H L. Molecular dynamics simulations of self-diffusion coefficient and thermal conductivity of methane at low and moderate densities[J]. Fluid Phase Equilibria,2010,297(1):40-45. doi: 10.1016/j.fluid.2010.06.008
    [25] 王和堂,杨景皓,谭江龙,等. 难注水煤层液态CO2加注多场耦合演化规律研究[J/OL]. 煤炭科学技术:1-12[2024-03-28]. http://kns.cnki.net/kcms/detail/11.2402.TD.20231107.0841.001.html.

    WANG Hetang,YANG Jinghao,TAN Jianglong,et al. Research on multi-field coupling evolution law of liquid CO2 filling in difficult water injection seams[J/OL]. Coal Science and Technology:1-12[2024-03-28]. http://kns.cnki.net/kcms/detail/11.2402.TD.20231107.0841.001.html.
  • 加载中
图(3) / 表(6)
计量
  • 文章访问数:  107
  • HTML全文浏览量:  16
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-24
  • 修回日期:  2024-03-26
  • 网络出版日期:  2024-04-11

目录

    /

    返回文章
    返回