[1] |
康红普,张镇,黄志增. 我国煤矿顶板灾害的特点及防控技术[J]. 煤矿安全,2020,51(10):24-33,38.KANG Hongpu,ZHANG Zhen,HUANG Zhizeng. Characteristics of roof disasters and controlling techniques of coal mine in China[J]. Safety in Coal Mines,2020,51(10):24-33,38.
|
[2] |
付恩三,白润才,刘光伟,等. “十三五”期间我国煤矿事故特征及演变趋势分析[J]. 中国安全科学学报,2022,32(12):88-94.FU Ensan,BAI Runcai,LIU Guangwei,et al. Analysis on characteristics and evolution trend of coal mine accidents in our country during "13th five-year" plan period[J]. China Safety Science Journal,2022,32(12):88-94.
|
[3] |
赵亚军,张志男,贾廷贵. 2010—2021年我国煤矿安全事故分析及安全对策研究[J]. 煤炭技术,2023,42(8):128-131.ZHAO Yajun,ZHANG Zhinan,JIA Tinggui. Analysis of coal mine safety accidents and research on safety countermeasures in China from 2010 to 2021[J]. Coal Technology,2023,42(8):128-131.
|
[4] |
徐刚,黄志增,范志忠,等. 工作面顶板灾害类型、监测与防治技术体系[J]. 煤炭科学技术,2021,49(2):1-11.XU Gang,HUANG Zhizeng,FAN Zhizhong,et al. Types,monitoring and prevention technology system of roof disasters in mining face[J]. Coal Science and Technology,2021,49(2):1-11.
|
[5] |
王国法. 煤矿智能化最新技术进展与问题探讨[J]. 煤炭科学技术,2022,50(1):1-27. doi: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201001WANG Guofa. New technological progress of coal mine intelligence and its problems[J]. Coal Science and Technology,2022,50(1):1-27. doi: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201001
|
[6] |
秦兵文,谢福星. 采场顶板灾变机理及预警系统[J]. 煤矿安全,2018,49(5):124-127.QIN Bingwen,XIE Fuxing. Disaster mechanism and early warning system of stope roof[J]. Safety in Coal Mines,2018,49(5):124-127.
|
[7] |
丁震,李浩荡,张庆华. 煤矿灾害智能预警架构及关键技术研究[J]. 工矿自动化,2023,49(4):15-22.DING Zhen,LI Haodang,ZHANG Qinghua. Research on intelligent hazard early warning architecture and key technologies for coal mine[J]. Journal of Mine Automation,2023,49(4):15-22.
|
[8] |
王文广. 知识图谱:认知智能理论与实战[M]. 北京:电子工业出版社,2022:4-7.WANG Wenguang. Knowledge graph:theory and practice of cognitive intelligence[M]. Beijing:Publishing House of Electronics Industry,2022:4-7.
|
[9] |
张吉祥,张祥森,武长旭,等. 知识图谱构建技术综述[J]. 计算机工程,2022,48(3):23-37.ZHANG Jixiang,ZHANG Xiangsen,WU Changxu,et al. Survey of knowledge graph construction techniques[J]. Computer Engineering,2022,48(3):23-37.
|
[10] |
付雷杰,曹岩,白瑀,等. 国内垂直领域知识图谱发展现状与展望[J]. 计算机应用研究,2021,38(11):3201-3214.FU Leijie,CAO Yan,BAI Yu,et al. Development status and prospect of vertical domain knowledge graph in China[J]. Application Research of Computers,2021,38(11):3201-3214.
|
[11] |
ABU-SALIH B. Domain-specific knowledge graphs:a survey[J]. Journal of Network and Computer Applications,2021,185. DOI: 10.1016/j.jnca.2021.103076.
|
[12] |
JI Shaoxiong,PAN Shirui,CAMBRIA E,et al. A survey on knowledge graphs:representation,acquisition,and applications[J]. IEEE Transactions on Neural Networks and Learning Systems,2021,33(2):494-514.
|
[13] |
刘鹏,叶帅,舒雅,等. 煤矿安全知识图谱构建及智能查询方法研究[J]. 中文信息学报,2020,34(11):49-59.LIU Peng,YE Shuai,SHU Ya,et al. Coalmine safety:knowledge graph construction and its QA approach[J]. Journal of Chinese Information Processing,2020,34(11):49-59.
|
[14] |
曹现刚,张梦园,雷卓,等. 煤矿装备维护知识图谱构建及应用[J]. 工矿自动化,2021,47(3):41-45.CAO Xiangang,ZHANG Mengyuan,LEI Zhuo,et al. Construction and application of knowledge graph for coal mine equipment maintenance[J]. Industry and Mine Automation,2021,47(3):41-45.
|
[15] |
蔡安江,张妍,任志刚. 煤矿综采设备故障知识图谱构建[J]. 工矿自动化,2023,49(5):46-51.CAI Anjiang,ZHANG Yan,REN Zhigang. Fault knowledge graph construction for coal mine fully mechanized mining equipment[J]. Journal of Mine Automation,2023,49(5):46-51.
|
[16] |
陈德彦,赵宏,张霞. 专家视图与本体视图的语义映射方法[J]. 软件学报,2020,31(9):2855-2882.CHEN Deyan,ZHAO Hong,ZHANG Xia. Semantic mapping methods between expert view and ontology view[J]. Journal of Software,2020,31(9):2855-2882.
|
[17] |
吴炳潮,邓成龙,关贝,等. 动态迁移实体块信息的跨领域中文实体识别模型[J]. 软件学报,2022,33(10):3776-3792.WU Bingchao,DENG Chenglong,GUAN Bei,et al. Dynamically transfer entity span information for cross-domain Chinese named entity recognition[J]. Journal of Software,2022,33(10):3776-3792.
|
[18] |
WANG Yu,TONG Hanghang,ZHU Ziye,et al. Nested named entity recognition:a survey[J]. ACM Transactions on Knowledge Discovery from Data,2022,16(6):1-29.
|
[19] |
宁尚明,滕飞,李天瑞. 基于多通道自注意力机制的电子病历实体关系抽取[J]. 计算机学报,2020,43(5):916-929.NING Shangming,TENG Fei,LI Tianrui. Multi-channel self-attention mechanism for relation extraction in clinical records[J]. Chinese Journal of Computers,2020,43(5):916-929.
|
[20] |
鄂海红,张文静,肖思琪,等. 深度学习实体关系抽取研究综述[J]. 软件学报,2019,30(6):1793-1818.E Haihong,ZHANG Wenjing,XIAO Siqi,et al. Survey of entity relationship extraction based on deep learning[J]. Journal of Software,2019,30(6):1793-1818.
|
[21] |
ZHU Huiming,HE Chunhui,FANG Yang,et al. Fine grained named entity recognition via seq2seq framework[J]. IEEE Access,2020,8:53953-53961. doi: 10.1109/ACCESS.2020.2980431
|
[22] |
YANG Dongying,LIAN Tao,ZHENG Wen,et al. Enriching word information representation for Chinese cybersecurity named entity recognition[J]. Neural Processing Letters,2023,55(6):7689-7707. doi: 10.1007/s11063-023-11280-7
|
[23] |
ZHENG Changmeng,CAI Yi,XU Jingyun,et al. A boundary-aware neural model for nested named entity recognition[C]. Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing,Hong Kong,2019:357-366.
|
[24] |
TAN Chuanqi,QIU Wei,CHEN Mosha,et al. Boundary enhanced neural span classification for nested named entity recognition[C]. The AAAI Conference on Artificial Intelligence,New York,2020:9016-9023.
|
[25] |
LI Fei,WANG Zheng,HUI Siucheung,et al. A segment enhanced span-based model for nested named entity recognition[J]. Neurocomputing,2021,465:26-37. doi: 10.1016/j.neucom.2021.08.094
|
[26] |
TANG Ruixue,CHEN Yanping,QIN Yongbin,et al. Boundary regression model for joint entity and relation extraction[J]. Expert Systems with Applications,2023,229. DOI: 10.1016/J.ESWA.2023.120441.
|
[27] |
ZHENG Suncong,WANG Feng,BAO Hongyun,et al. Joint extraction of entities and relations based on a novel tagging scheme[C]. The 55th Annual Meeting of the Association for Computational Linguistics,Vancouver,2017:1227-1236.
|
[28] |
WEI Zhepei,SU Jianlin,WANG Yue,et al. A novel cascade binary tagging framework for relational triple extraction[C]. The 58th Annual Meeting of the Association for Computational Linguistics,Tokyo,2020:1476-1488.
|
[29] |
SHEIKHAEI M S,ZAFARI H,TIAN Yuan. Joined type length encoding for nested named entity recognition[J]. Transactions on Asian and Low-Resource Language Information Processing,2021,21(3):1-23.
|
[30] |
田玲,张谨川,张晋豪,等. 知识图谱综述——表示、构建、推理与知识超图理论[J]. 计算机应用,2021,41(8):2161-2186.TIAN Ling,ZHANG Jinchuan,ZHANG Jinhao,et al. Knowledge graph survey:representation,construction,reasoning and knowledge hypergraph theory[J]. Journal of Computer Applications,2021,41(8):2161-2186.
|