留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Social Transformer的井下多人轨迹预测方法

马征 杨大山 张天翔

马征,杨大山,张天翔. 基于Social Transformer的井下多人轨迹预测方法[J]. 工矿自动化,2024,50(5):67-74.  doi: 10.13272/j.issn.1671-251x.2023110084
引用本文: 马征,杨大山,张天翔. 基于Social Transformer的井下多人轨迹预测方法[J]. 工矿自动化,2024,50(5):67-74.  doi: 10.13272/j.issn.1671-251x.2023110084
MA Zheng, YANG Dashan, ZHANG Tianxiang. Multi-personnel underground trajectory prediction method based on Social Transformer[J]. Journal of Mine Automation,2024,50(5):67-74.  doi: 10.13272/j.issn.1671-251x.2023110084
Citation: MA Zheng, YANG Dashan, ZHANG Tianxiang. Multi-personnel underground trajectory prediction method based on Social Transformer[J]. Journal of Mine Automation,2024,50(5):67-74.  doi: 10.13272/j.issn.1671-251x.2023110084

基于Social Transformer的井下多人轨迹预测方法

doi: 10.13272/j.issn.1671-251x.2023110084
基金项目: 中央高校基本科研业务费专项项目(FRF-TP-24-060A);天地科技股份有限公司科技创新创业资金专项项目(2023-TD-ZD005-005,2023CG-ZB-10)。
详细信息
    作者简介:

    马征(1996—),男,山东济宁人,硕士,现从事矿井视频分析技术方面的研究工作,E-mail:mazheng@ccrise.cn

  • 中图分类号: TD67

Multi-personnel underground trajectory prediction method based on Social Transformer

  • 摘要: 目前煤矿井下人员轨迹预测方法中,Transformer与循环神经网络(RNN)、长短期记忆(LSTM)网络相比,在处理数据时不仅计算量小,同时还有效解决了梯度消失导致的长时依赖问题。但当环境中涉及多人同时运动时,Transformer对于场景中所有人员未来轨迹的预测会出现较大偏差。并且目前在井下多人轨迹预测领域尚未出现一种同时采用Transformer并考虑个体之间相互影响的模型。针对上述问题,提出一种基于Social Transformer的井下多人轨迹预测方法。首先对井下每一个人员独立建模,获取人员历史轨迹信息,通过Transformer编码器进行特征提取,接着由全连接层对特征进行表示,然后通过基于图卷积的交互层相互连接,该交互层允许空间上接近的网络彼此共享信息,计算预测对象在受到周围邻居影响时对周围邻居分配的注意力,从而提取其邻居的运动模式,继而更新特征矩阵,最后新的特征矩阵由Transformer解码器进行解码,输出对于未来时刻的人员位置信息预测。实验结果表明,Social Transformer的平均位移误差相较于Transformer降低了45.8%,且与其他主流轨迹预测方法LSTM,S−GAN,Trajectron++和Social−STGCNN相比分别降低了67.1%,35.9%,30.1%和10.9%,有效克服了煤矿井下多人场景中由于人员间互相影响导致预测轨迹失准的问题,提升了预测精度。

     

  • 图  1  基于Social Transformer的井下多人轨迹预测方法的网络模型结构

    Figure  1.  Network model structure of underground multi-personnel trajectory prediction method based on Social Transformer

    图  2  Transformer网络模型结构

    Figure  2.  Transformer network model structure

    图  3  自注意力机制结构

    Figure  3.  Self-attention mechanism structure

    图  4  行人与附近人员信息交互过程

    Figure  4.  Information interaction among pedestrians and nearby people

    图  5  各方法耗时对比

    Figure  5.  Comparison of time consumption for each method

    图  6  中央变电所1人员轨迹预测效果

    Figure  6.  Prediction effect of personnel trajectory in central substation 1

    图  7  中央变电所2人员轨迹预测效果

    Figure  7.  Prediction effect of personnel trajectory in central substation 2

    图  8  水泵房人员轨迹预测效果

    Figure  8.  Prediction effect of personnel trajectory in pump house

    图  9  副井口车辆转载点人员轨迹预测效果

    Figure  9.  Prediction effect of personnel trajectory at the vehicle transfer point of auxiliary mine shaft

    表  1  多人轨迹预测结果

    Table  1.   Multi-personnel trajectory prediction result

    方法 ADE 平均值
    BIWI Hotel Crowds UCY MOT PETS SDD 自建数据集
    LSTM 0.798 0.743 0.899 0.862 0.803 0.821
    Transformer 0.470 0.422 0.534 0.542 0.523 0.498
    S−GAN 0.561 0.492 0.681 0.588 0.562 0.577
    Trajectron++ 0.415 0.331 0.366 0.422 0.397 0.386
    Social−STGCNN 0.280 0.223 0.297 0.361 0.355 0.303
    Social Transformer 0.240 0.194 0.265 0.355 0.295 0.270
    下载: 导出CSV

    表  2  不同预测序列长度下多人轨迹预测结果

    Table  2.   Prediction results of multi-personnel trajectory under different prediction sequence length

    方法ADE
    预测12帧预测20帧预测28帧
    LSTM0.8211.4782.238
    Transformer0.4870.6820.940
    Social Transformer0.2740.3370.455
    下载: 导出CSV

    表  3  不同历史数据下多人轨迹预测结果

    Table  3.   Prediction results of multi-personnel trajectory under different historical data

    方法ADE
    无缺失缺失3帧缺失6帧
    LSTM0.8211.1121.535
    Transformer0.4980.5730.662
    Social Transformer0.2660.3020.343
    下载: 导出CSV
  • [1] 刘海忠. 电子围栏中心监控平台的设计与开发[D]. 武汉:华中师范大学,2012.

    LIU Haizhong. Design and development of center monitoring platform for electronic fence[D]. Wuhan:Central China Normal University,2012.
    [2] JEONG N Y,LIM S H,LIM E,et al. Pragmatic clinical trials for real-world evidence:concept and implementation[J]. Cardiovascular Pevention and Pharmacotherapy,2020,2(3):85-98. doi: 10.36011/cpp.2020.2.e12
    [3] KLENSKE E D,ZEILINGER M N,SCHOLKOPF B,et al. Gaussian process-based predictive control for periodic error correction[J]. IEEE Transactions on Control Systems Technology,2016,24(1):110-121. doi: 10.1109/TCST.2015.2420629
    [4] HUNT K J,SBARBARO D,ŻBIKOWSKI R,et al. Neural networks for control systems-a survey[J]. Automatica,1992,28(6):1083-1112. doi: 10.1016/0005-1098(92)90053-I
    [5] PRESTON D B. Spectral analysis and time series[J]. Technometrics,1983,25(2):213-214. doi: 10.1080/00401706.1983.10487866
    [6] AKAIKE H. Fitting autoregreesive models for prediction[M]//PARZEN E,TANABE K,KITAGAWA G. Selected papers of Hirotugu Akaike. New York:Springer-Verlag New York Inc,1998:131-135.
    [7] ZHANG Jianjing,LIU Hongyi,CHANG Qing,et al. Recurrent neural network for motion trajectory prediction in human-robot collaborative assembly[J]. CIRP Annals,2020,69(1):9-12. doi: 10.1016/j.cirp.2020.04.077
    [8] SHERSTINSKY A. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network[J]. Physica D:Nonlinear Phenomena,2020. DOI: 10.1016/j.physd.2019.132306.
    [9] SONG Xiao,CHEN Kai,LI Xu,et al. Pedestrian trajectory prediction based on deep convolutional LSTM network[J]. IEEE Transactions on Intelligent Transportation Systems,2020,22(6):3285-3302.
    [10] SALZMANN T,IVANOVIC B,CHAKRAVARTY P,et al. Trajectron++:dynamically-feasible trajectory forecasting with heterogeneous data[C]. 16th European Conference on Computer Vision,Glasgow,2020:683-700.
    [11] MOHAMED A,QIAN Kun,ELHOSEINY M,et al. Social-STGCNN:a social spatio-temporal graph convolutional neural network for human trajectory prediction[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Seattle,2020:14424-14432.
    [12] SHANKAR V,YOUSEFI E,MANASHTY A,et al. Clinical-GAN:trajectory forecasting of clinical events using transformer and generative adversarial networks[J]. Artificial Intelligence in Medicine,2023,138. DOI: 10.1016/j.artmed.2023.102507.
    [13] HAN Kai,WANG Yunhe,CHEN Hanting,et al. A survey on vision transformer[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2023,45(1):87-110. doi: 10.1109/TPAMI.2022.3152247
    [14] GRAHAM B,EL-NOUBY A,TOUVRON H,et al. LeViT:a vision transformer in ConvNet’s clothing for faster inference[C]. IEEE/CVF International Conference on Computer Vision,Montreal,2021:12259-12269.
    [15] ARNAB A,DEHGHANI M,HEIGOLD G,et al. ViViT:a video vision transformer[C]. IEEE/CVF International Conference on Computer Vision,Montreal,2021:6836-6846.
    [16] VASWANI A,SHAZEER N,PARMAR N,et al. Attention is all you need[C]. 31st Conference on Neural Information Processing Systems,Long Beach,2017:5998-6008.
    [17] 刘赟. ReLU激活函数下卷积神经网络的不同类型噪声增益研究[D]. 南京:南京邮电大学,2023.

    LIU Yun. Research on different types of noise gain in convolutional neural networks under ReLU activation function[D]. Nanjing:Nanjing University of Posts and Telecommunications,2023.
    [18] 靳晶晶,王佩. 基于卷积神经网络的图像识别算法研究[J]. 通信与信息技术,2022(2):76-81.

    JIN Jingjing,WANG Pei. Research on image recognition algorithm based on convolutional neural network[J]. Communications and Information Technology,2022(2):76-81.
    [19] ALAHI A,GOEL K,RAMANATHAN V,et al. Social LSTM:human trajectory prediction in crowded spaces[C]. IEEE Conference on Computer Vision and Pattern Recognition,Las Vegas,2016:961-971.
    [20] BERGSTRA J,BREULEUX O,BASTIEN F,et al. Theano:a CPU and GPU math compiler in Python[C]. The 9th Python in Science Conference,2010. DOI: 10.25080/majora-92bf1922-003.
    [21] PESARANGHADER A,WANG Yiping,HAVAEI M. CT-SGAN:computed tomography synthesis GAN[C]// ENGELHARDT S,OKSUZ I,ZHU Dajiang,et al. Deep generative models,and data augmentation,labelling,and imperfections. Berlin:Springer-Verlag,2021:67-79.
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  99
  • HTML全文浏览量:  24
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-26
  • 修回日期:  2024-05-25
  • 网络出版日期:  2024-06-13

目录

    /

    返回文章
    返回