留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进门控循环神经网络的采煤机滚筒调高量预测

齐爱玲 王雨 马宏伟

齐爱玲,王雨,马宏伟. 基于改进门控循环神经网络的采煤机滚筒调高量预测[J]. 工矿自动化,2024,50(2):116-123.  doi: 10.13272/j.issn.1671-251x.2023110039
引用本文: 齐爱玲,王雨,马宏伟. 基于改进门控循环神经网络的采煤机滚筒调高量预测[J]. 工矿自动化,2024,50(2):116-123.  doi: 10.13272/j.issn.1671-251x.2023110039
QI Ailing, WANG Yu, MA Hongwei. Prediction of height adjustment of shearer drum based on improved gated recurrent neural network[J]. Journal of Mine Automation,2024,50(2):116-123.  doi: 10.13272/j.issn.1671-251x.2023110039
Citation: QI Ailing, WANG Yu, MA Hongwei. Prediction of height adjustment of shearer drum based on improved gated recurrent neural network[J]. Journal of Mine Automation,2024,50(2):116-123.  doi: 10.13272/j.issn.1671-251x.2023110039

基于改进门控循环神经网络的采煤机滚筒调高量预测

doi: 10.13272/j.issn.1671-251x.2023110039
基金项目: 国家自然科学基金资助项目(61674121)。
详细信息
    作者简介:

    齐爱玲(1972—),女,陕西西安人,副教授,博士,研究方向为煤岩识别、信号与图像处理,E-mail:qalemail@126.com

    通讯作者:

    王雨(2000—),女,陕西榆林人,硕士研究生,研究方向为煤岩预测,E-mail: 21208223078@stu.xust.edu.cn

  • 中图分类号: TD421.6

Prediction of height adjustment of shearer drum based on improved gated recurrent neural network

  • 摘要: 采煤机自适应截割技术是实现综采工作面智能化开采的关键技术。针对采煤机在复杂煤层下自动截割精度较低的问题,提出了一种基于改进门控循环神经网络(GRU)的采煤机滚筒调高量预测方法。鉴于截割轨迹纵向及横向相邻数据之间的相关性,采用定长滑动时间窗法对获取的采煤机滚筒高度数据进行预处理,将输入数据划分为连续、大小可调的子序列,同时处理横向、纵向的特征信息。为提高模型预测效率,满足循环截割的实时性要求,提出了一种用因果卷积改进的门控循环神经网络(CC−GRU),对输入数据进行双重特征提取和双重数据过滤。CC−GRU利用因果卷积提前聚焦序列纵向的局部时间特征,以减少计算成本,提高运算速度;利用门控机制对卷积得到的特征进行序列化建模,以捕捉元素之间的长期依赖关系。实验结果表明,采用CC−GRU模型对采煤机滚筒调高量进行预测,平均绝对误差(MAE)为43.80 mm,平均绝对百分比误差(MAPE)为1.90%,均方根误差(RMSE)为50.35 mm,决定系数为0.65,预测时间仅为0.17 s;相比于长短时记忆(LSTM)神经网络、GRU、时域卷积网络(TCN),CC−GRU模型的预测速度较快且预测精度较高,能够更准确地对采煤机调高轨迹进行实时预测,为工作面煤层模型的建立和采煤机调高轨迹的预测提供了依据。

     

  • 图  1  基于CC−GRU的采煤机滚筒调高量预测流程

    Figure  1.  Prediction process of height adjustment of shearer drum based on causal convolution gated recurrent unit (CC-GRU)

    图  2  CC−GRU预测模型结构

    Figure  2.  Structure of CC-GRU prediction model

    图  3  扩张因果卷积结构

    Figure  3.  Causal dilated convolutional structure

    图  4  GRU结构

    Figure  4.  Structure of gated recurrent unit

    图  5  插值曲面

    Figure  5.  Interpolation surface

    图  6  不同参数下CC−GRU模型的预测结果对比

    Figure  6.  Comparison of prediction results of CC-GRU model under different parameters

    图  7  不同模型预测结果对比

    Figure  7.  Comparison of prediction results of different models

    图  8  评价指标对比

    Figure  8.  Comparison of evaluation indicators

    表  1  不同参数下CC−GRU模型的预测结果

    Table  1.   Prediction results of CC-GRU model under different parameters

    隐层层数 隐层节点数 $ {\rm{MAE}}/{\mathrm{mm}} $ $ {\rm{MAPE}}/\text{%} $ $ {\rm{RMSE}}/{\mathrm{mm}} $ $ {{{R^{\text{2}}}}} $
    第1层 第2层 第3层
    2 16 16 46.54 2.02 53.41 0.61
    2 32 16 51.88 2.25 64.73 0.35
    2 32 32 43.80 1.90 50.35 0.65
    2 64 32 47.44 2.06 54.38 0.55
    2 64 64 50.58 2.19 57.40 0.45
    3 16 16 16 47.84 2.07 54.15 0.54
    3 32 16 16 50.98 2.21 61.70 0.41
    3 32 32 16 48.89 2.12 55.86 0.56
    3 32 32 32 53.71 2.32 67.33 0.29
    下载: 导出CSV

    表  2  不同模型评价指标

    Table  2.   Evaluation indicators of different models

    模型 $ {\rm{MAE}}/{\mathrm{mm}} $ $ {\rm{MAPE}}/ {\text{%}} $ $ {\rm{RMSE}}/{\mathrm{mm}} $ $ {{{R^{\text{2}}}}} $
    LSTM 51.01 2.21 63.85 0.36
    GRU 48.25 2.10 59.58 0.38
    TCN 61.27 2.64 66.41 0.32
    CC−GRU 43.80 1.90 50.35 0.65
    下载: 导出CSV

    表  3  不同模型预测时间对比

    Table  3.   Comparison of prediction time of different models

    模型预测时间/s
    LSTM0.96
    GRU0.88
    TCN0.08
    CC−GRU0.17
    下载: 导出CSV
  • [1] 王国法,张良,李首滨,等. 煤矿无人化智能开采系统理论与技术研发进展[J]. 煤炭学报,2023,48(1):34-53.

    WANG Guofa,ZHANG Liang,LI Shoubin,et al. Progresses in theory and technological development of unmanned smart mining system[J]. Journal of China Coal Society,2023,48(1):34-53.
    [2] 王国法,富佳兴,孟令宇. 煤矿智能化创新团队建设与关键技术研发进展[J]. 工矿自动化,2022,48(12):1-15.

    WANG Guofa,FU Jiaxing,MENG Lingyu. Development of innovation team construction and key technology research in coal mine intelligence[J]. Journal of Mine Automation,2022,48(12):1-15.
    [3] HOLM M,BOHN C. Modelling of the cutting process of underground coal mining with shearer loaders for adaptive horizon control[C]. 19th SGEM International Multidisciplinary Scientific GeoConference,2019:423-430. DOI: 10.5593/sgem2019/1.3/S03.054.
    [4] YANG Jianjian,CHANG Boshen,ZHANG Yuchen,et al. CNN coal and rock recognition method based on hyperspectral data[J]. International Journal of Coal Science & Technology,2022,9(1). DOI: 10.1007/s40789-022-00516-x.
    [5] WANG Haijian,LIU Lili,ZHAO Xuemei,et al. Pre-perception and accurate recognition of coal–rock interface based on active excitation infrared characterization[J]. Journal of Computational Design and Engineering,2022,9(5):2040-2054. doi: 10.1093/jcde/qwac104
    [6] SUN Chuanmeng,LI Xinyu,CHEN Jiaxin,et al. Coal-rock image recognition method for complex and harsh environment in coal mine using deep learning models[J]. IEEE Access,2023,11:80794-80805. doi: 10.1109/ACCESS.2023.3300243
    [7] 张强,张润鑫,刘峻铭,等. 煤矿智能化开采煤岩识别技术综述[J]. 煤炭科学技术,2022,50(2):1-26.

    ZHANG Qiang,ZHANG Runxin,LIU Junming,et al. Review on coal and rock identification technology for intelligent mining in coal mines[J]. Coal Science and Technology,2022,50(2):1-26.
    [8] 毛明仓,张孝斌,张玉良. 基于透明地质大数据智能精准开采技术研究[J]. 煤炭科学技术,2021,49(1):286-293.

    MAO Mingcang,ZHANG Xiaobin,ZHANG Yuliang. Research on intelligent and precision mining technology based on transparent geological big data[J]. Coal Science and Technology,2021,49(1):286-293.
    [9] WANG Chen,ZHOU Jie. New advances in automatic shearer cutting technology for thin seams in Chinese underground coal mines[J]. Energy Exploration & Exploitation,2022,40(1):3-16.
    [10] 田立勇,毛君,王启铭. 基于采煤机摇臂惰轮轴受力分析的综合煤岩识别方法[J]. 煤炭学报,2016,41(3):782-787.

    TIAN Liyong,MAO Jun,WANG Qiming. Coal and rock identification method based on the force of idler shaft in shearer's ranging arm[J]. Journal of China Coal Society,2016,41(3):782-787.
    [11] 王廷栋. 基于遗传算法的采煤机截割控制系统研究[J]. 煤炭技术,2021,40(10):206-208.

    WANG Tingdong. Research on cutting control system of coal shearer based on genetic algorithm[J]. Coal Technology,2021,40(10):206-208.
    [12] 司垒,王忠宾,刘新华,等. 基于煤层分布预测的采煤机截割路径规划[J]. 中国矿业大学学报,2014,43(3):464-471.

    SI Lei,WANG Zhongbin,LIU Xinhua,et al. Cutting path planning of coal mining machine based on prediction of coal seam distribution[J]. Journal of China University of Mining & Technology,2014,43(3):464-471.
    [13] XIE Jiacheng,YAN Zewen,WANG Xuewen,et al. A memory cutting method of virtual shearer based on shape track prediction of AFC[J]. Mining,Metallurgy & Exploration,2021,38(5):2005-2019.
    [14] WANG Weibing,JING Zelin,ZHAO Shuanfeng,et al. Intelligent height adjustment method of shearer drum based on rough set significance reduction and fuzzy rough radial basis function neural network[J]. Applied Sciences,2023,13(5):2877-2898. doi: 10.3390/app13052877
    [15] 梁耍,王世博,葛世荣,等. 综采工作面煤层三维模型动态修正方法研究[J]. 工矿自动化,2022,48(7):58-65,72.

    LIANG Shua,WANG Shibo,GE Shirong,et al. Study on dynamic modification method of 3D model of coal seam in fully mechanized working face[J]. Journal of Mine Automation,2022,48(7):58-65,72.
    [16] 崔涛. 基于真实开采数据的采运装备虚拟规划方法研究[D]. 太原:太原理工大学,2022.

    CUI Tao. Research on virtual planning method of mining and transportation equipment based on real mining data[D]. Taiyuan:Taiyuan University of Technology,2022.
    [17] 陈伟华,南鹏飞,闫孝姮,等. 基于深度学习的采煤机截割轨迹预测及模型优化[J]. 煤炭学报,2020,45(12):4209-4215.

    CHEN Weihua,NAN Pengfei,YAN Xiaoheng,et al. Prediction and model optimization of shearer memory cutting trajectory based on deep learning[J]. Journal of China Coal Society,2020,45(12):4209-4215.
    [18] 唐志章. 综采工作面集中控制关键技术研究[D]. 徐州:中国矿业大学,2021.

    TANG Zhizhang. Research on key technologies of centralized control in fully mechanized mining face[D]. Xuzhou:China University of Mining and Technology,2021.
    [19] BAI Shaojie,KOLTER J Z,KOLTUN V. Trellis networks for sequence modeling[C]. The 7th International Conference on Learning Representations,New Orleans,2018:1-18.
    [20] CHO K,MERRIENBOER B,GULCEHRE C,et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]. Conference on Empirical Methods in Natural Language Processing,Doha,2014:1724-1734.
    [21] RUÍZ-GUIROLA D E,LÓPEZ O L A,MONTEJO-SÁNCHEZ S,et al. Performance analysis of ML-based MTC traffic pattern predictors[J]. IEEE Wireless Communications Letters,2023,12(7):1144-1148. doi: 10.1109/LWC.2023.3264273
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  130
  • HTML全文浏览量:  38
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-13
  • 修回日期:  2024-02-19
  • 网络出版日期:  2024-03-04

目录

    /

    返回文章
    返回