Experimental study on the mechanical and acoustic emission features of frozen single fractured sandstone under drop hammer impact
-
摘要: 高原寒区矿山岩体受低温环境和动载扰动等影响会产生失稳现象。现有研究大多围绕裂隙砂岩在不同冻结温度下的静力学特性,考虑到工程开挖的影响,需要进一步研究冻结裂隙砂岩在动载作用下的力学及声发射特征。开展了冻结单裂隙砂岩的落锤冲击试验,结合声发射监测技术分析了冻结单裂隙砂岩力学及声发射特征。试验结果表明:① 裂隙倾角增加会引起应变时程曲线在应变峰值前回弹幅度增大,裂纹由裂隙两侧分布转变为裂隙上下两端分布;落锤下落高度增大后,应变时程曲线在应变峰值前出现明显双峰回弹,破坏明显加剧;冻结温度降低会使应变峰值出现时间提前,且应变峰值增大。② 微裂纹扩展具有阶段性特征,在应变峰值处对应较强的微破裂活动并伴有剧烈的能量释放。③ 微破裂活动性随裂隙倾角增大呈先增后减趋势;落锤下落高度增大,微破裂活动剧烈程度阶段性递减;冻结温度降低使微破裂活动发生时间提前。④ 微裂纹主要以张拉裂纹为主,与宏观的破坏模式对应。⑤ 熵值急剧增加是砂岩破坏前兆,可作为砂岩动态失稳的预警指标。Abstract: Mining rock masses in high-altitude cold regions can experience instability due to low temperature environments and dynamic load disturbances. Existing research mostly focuses on the static features of fractured sandstone under different freezing temperatures. Considering the influence of engineering excavation, further research is needed to investigate the mechanical and acoustic emission features of frozen fractured sandstone under dynamic loads. Therefore, a drop hammer impact test is conducted on frozen single fractured sandstone. The mechanical and acoustic emission features of frozen single fractured sandstone are analyzed using acoustic emission monitoring technology. The experimental results show the following points. ① An increase in the inclination angle of the crack will cause an increase in the rebound amplitude of the strain time curve before the peak strain. The crack will change from being distributed on both sides of the crack to being distributed on both ends of the crack. After the drop height of the hammer increases, the strain time curve shows a significant bimodal rebound before the strain peak, and the damage is significantly intensified. A decrease in freezing temperature will lead to an earlier onset of strain peak and an increase in strain peak. ② The propagation of microcracks has stage features, corresponding to strong microcracking activity at the peak strain and accompanied by intense energy release. ③ The activity of microcracking activity increases first and then decreases with the increase of inclination angle of the crack. The drop height of the hammer increases, and the intensity of microcracking activity gradually decreases. The decrease in freezing temperature leads to an earlier occurrence of microcracking activity. ④ Micro cracks are mainly tensile cracks, corresponding to macroscopic failure modes. ⑤ The sharp increase in entropy value is a precursor to sandstone failure and can be used as a warning indicator for dynamic instability of sandstone.
-
Key words:
- fractured sandstone /
- frozen sandstone /
- drop hammer impact /
- dynamic mechanics /
- acoustic emission /
- entropy
-
表 1 落锤冲击试验参数
Table 1. Drop hammer impact test parameters
试样编号 裂隙倾角/(°) 冻结温度/℃ 落锤下落高度/m 应变率/s−1 A−0 0 −8 0.7 3.12 A−30 30 −8 0.7 7.14 A−45 45 −8 0.7 6.35 A−60 60 −8 0.7 4.12 A−90 90 −8 0.7 7.75 H−0.6 0 −16 0.6 3.97 H−0.7 0 −16 0.7 8.88 H−0.8 0 −16 0.8 4.16 H−0.9 0 −16 0.9 11.96 H−1.0 0 −16 1.0 8.31 T−4 60 −4 0.9 5.44 T−8 60 −8 0.9 6.24 T−12 60 −12 0.9 11.53 T−16 60 −16 0.9 20.07 T−20 60 −20 0.9 23.84 表 2 冻结单裂隙砂岩损伤增长速率
Table 2. Damage growth rate of frozen single fractured sandstone
试样编号 AB段损伤
增长速率拟合度 试样编号 BC段损伤
增长速率拟合度 A−0 1.05 0.869 A−0 1.27 0.869 A−30 0.50 0.987 A−30 1.58 0.974 A−45 1.24 0.982 A−45 1.83 1.000 A−60 1.03 0.981 A−60 9.16 0.998 A−90 0.95 0.955 A−90 5.42 0.949 H−0.6 1.31 0.910 H−0.6 10.25 0.866 H−0.7 0.67 0.813 H−0.7 4.44 0.977 H−0.8 2.17 0.989 H−0.8 1.40 0.999 H−0.9 1.42 0.904 H−0.9 1.39 0.976 H−1.0 1.52 0.744 H−1.0 0.75 0.949 T−4 1.21 0.814 T−4 44.44 0.852 T−8 0.63 0.948 T−8 13.65 0.991 T−12 0.99 0.827 T−12 17.68 0.819 T−16 2.01 0.961 T−16 1.07 0.979 T−20 1.39 0.931 T−20 0.46 0.947 -
[1] 郝天轩,徐新革,赵立桢. 煤岩裂隙图像识别方法研究[J]. 工矿自动化,2023,49(10):68-74.HAO Tianxuan,XU Xinge,ZHAO Lizhen. Research on image recognition method of coal rock fractures[J]. Journal of Mine Automation,2023,49(10):68-74. [2] 陈宇龙,张科,孙欢. 冻融循环作用下岩石表面裂纹扩展过程细观研究[J]. 土木工程学报,2019,52(增刊1):1-7.CHEN Yulong,ZHANG Ke,SUN Huan. Meso-research on the development of rock surface crack under freeze-thaw cycles[J]. China Civil Engineering Journal,2019,52(S1):1-7. [3] 朱卫兵,王晓振,谢建林,等. 矿山采动覆岩内部岩移原位监测技术进展及应用[J]. 工矿自动化,2023,49(9):1-12.ZHU Weibing,WANG Xiaozhen,XIE Jianlin,et al. Advancements and applications:In-situ monitoring technology for overburden movement in mining[J]. Journal of Mine Automation,2023,49(9):1-12. [4] 刘学伟,王赛,刘滨,等. 不同注浆材料填充双裂隙类岩石试样力学特性研究[J]. 岩石力学与工程学报,2024,43(3):623-638.LIU Xuewei,WANG Sai,LIU Bin,et al. Effect of filling grouting material on mechanical properties and mechanism of rock-like samples with double-crack[J]. Chinese Journal of Rock Mechanics and Engineering,2024,43(3):623-638. [5] 陈卫忠,李术才,邱祥波,等. 岩石裂纹扩展的实验与数值分析研究[J]. 岩石力学与工程学报,2003,22(1):18-23. doi: 10.3321/j.issn:1000-6915.2003.01.003CHEN Weizhong,LI Shucai,QIU Xiangbo,et al. Experimental and numerical research on crack propagation in rock under compression[J]. Chinese Journal of Rock Mechanics and Engineering,2003,22(1):18-23. doi: 10.3321/j.issn:1000-6915.2003.01.003 [6] YIN Tubing,LI Qiang,LI Xibing. Experimental investigation on mode I fracture characteristics of granite after cyclic heating and cooling treatments[J]. Engineering Fracture Mechanics,2019,222. DOI: 10.1016/j.engfracmech.2019.106740. [7] 乔趁,王宇,宋正阳,等. 饱水裂隙花岗岩周期冻胀力演化特性试验研究[J]. 岩土力学,2021,42(8):2141-2150.QIAO Chen,WANG Yu,SONG Zhengyang,et al. Experimental study on the evolution characteristics of cyclic frost heaving pressure of saturated fractured granite[J]. Rock and Soil Mechanics,2021,42(8):2141-2150. [8] BAI Yao,SHAN Renliang,JU Yang,et al. Experimental study on the strength,deformation and crack evolution behaviour of red sandstone samples containing two ice-filled fissures under triaxial compression[J]. Cold Regions Science and Technology,2020,174. DOI: 10.1016/j.coldregions.2020.103061. [9] 单仁亮,白瑶,孙鹏飞,等. 裂隙红砂岩冻胀力特性试验研究[J]. 煤炭学报,2019,44(6):1742-1752.SHAN Renliang,BAI Yao,SUN Pengfei,et al. Experimental study on frost heaving pressure properties in fractured red sandstone[J]. Journal of China Coal Society,2019,44(6):1742-1752. [10] 李平,唐旭海,刘泉声,等. 双裂隙类砂岩冻胀断裂特征与强度损失研究[J]. 岩石力学与工程学报,2020,39(1):115-125.LI Ping,TANG Xuhai,LIU Quansheng,et al. Experimental study on fracture characteristics and strength loss of intermittent fractured quasi-sandstone under freezing and thawing[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(1):115-125. [11] 贾蓬,王晓帅,王德超. 饱水裂隙岩石冻融变形特性研究[J]. 岩土力学,2023,44(2):345-354.JIA Peng,WANG Xiaoshuai,WANG Dechao. Study on the freeze-thaw deformation characteristics of saturated fractured rock[J]. Rock and Soil Mechanics,2023,44(2):345-354. [12] AGGELIS D G. Classification of cracking mode in concrete by acoustic emission parameters[J]. Mechanics Research Communications,2011,38(3):153-157. doi: 10.1016/j.mechrescom.2011.03.007 [13] 冯帆,陈绍杰,王琦,等. 真三轴卸载–动力扰动下自然与饱水砂岩破坏特性试验研究[J]. 岩石力学与工程学报,2022,41(11):2240-2253.FENG Fan,CHEN Shaojie,WANG Qi,et al. Experimental study on failure characteristics of natural and saturated sandstone under true triaxial unloading and dynamic disturbance condition[J]. Chinese Journal of Rock Mechanics and Engineering,2022,41(11):2240-2253. [14] ZHOU Xiaoping,NIU Yong,CHEN Hao,et al. Cracking behaviors and chaotic characteristics of sandstone with unfilled and filled dentate flaw[J]. Theoretical and Applied Fracture Mechanics,2021,112. DOI: 10.1016/j.tafmec.2020.102876. [15] 王宇,高少华,孟华君,等. 不同频率增幅疲劳荷载下双裂隙花岗岩破裂演化声发射特性与裂纹形态研究[J]. 岩石力学与工程学报,2021,40(10):1976-1989.WANG Yu,GAO Shaohua,MENG Huajun,et al. Investigation on acoustic emission characteristics and fracture network patterns of pre-flawed granite subjected to increasing-amplitude fatigue loads[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(10):1976-1989. [16] 吴宝杨,王伟男,郭东明. 浸水次数影响下裂隙砂岩强度损伤及声发射特征[J]. 采矿与安全工程学报,2020,37(5):1054-1060.WU Baoyang,WANG Weinan,GUO Dongming. Strength damage and AE characteristics of fractured sandstone under the influence of water intrusion times[J]. Journal of Mining & Safety Engineering,2020,37(5):1054-1060. [17] 张国凯,李海波,王明洋,等. 基于声学测试和摄像技术的单裂隙岩石裂纹扩展特征研究[J]. 岩土力学,2019,40(增刊1):63-72,81.ZHANG Guokai,LI Haibo,WANG Mingyang,et al. Crack propagation characteristics in rocks containing single fissure based on acoustic testing and camera technique[J]. Rock and Soil Mechanics,2019,40(S1):63-72,81. [18] DING Xin,XIAO Xiaochun,CUI Jingzhi,et al. Damage evolution,fractal dimension and a new crushing energy formula for coal with bursting liability[J]. Process Safety and Environmental Protection,2023,169:619-628. doi: 10.1016/j.psep.2022.11.059 [19] TRIANTIS D,KOURKOULIS S K. An alternative approach for representing the data provided by the acoustic emission technique[J]. Rock Mechanics and Rock Engineering,2018,51(8):2433-2438. doi: 10.1007/s00603-018-1494-1 [20] FARHIDZADEH A,SALAMONE S,SINGLA P. A probabilistic approach for damage identification and crack mode classification in reinforced concrete structures[J]. Journal of Intelligent Material Systems and Structures,2013,24(14):1722-1735. doi: 10.1177/1045389X13484101 [21] ZHANG Zhibo,LIU Xianan,ZHANG Yinghua,et al. Comparative study on fracture characteristics of coal and rock samples based on acoustic emission technology[J]. Theoretical and Applied Fracture Mechanics,2021,111. DOI: 10.1016/j.tafmec.2020.102851.