留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

综采工作面刮板输送机煤流时空分布研究

陈书航 王世博 葛世荣 王赟 马广军

陈书航,王世博,葛世荣,等. 综采工作面刮板输送机煤流时空分布研究[J]. 工矿自动化,2024,50(9):98-107.  doi: 10.13272/j.issn.1671-251x.2023110009
引用本文: 陈书航,王世博,葛世荣,等. 综采工作面刮板输送机煤流时空分布研究[J]. 工矿自动化,2024,50(9):98-107.  doi: 10.13272/j.issn.1671-251x.2023110009
CHEN Shuhang, WANG Shibo, GE Shirong, et al. Study on the spatiotemporal distribution of coal flow in the scraper conveyor of fully mechanized mining face[J]. Journal of Mine Automation,2024,50(9):98-107.  doi: 10.13272/j.issn.1671-251x.2023110009
Citation: CHEN Shuhang, WANG Shibo, GE Shirong, et al. Study on the spatiotemporal distribution of coal flow in the scraper conveyor of fully mechanized mining face[J]. Journal of Mine Automation,2024,50(9):98-107.  doi: 10.13272/j.issn.1671-251x.2023110009

综采工作面刮板输送机煤流时空分布研究

doi: 10.13272/j.issn.1671-251x.2023110009
基金项目: 国家自然科学基金面上项目(51874279);工信部产业基础再造和制造业高质量发展专项项目(TC220A04W-1/167)。
详细信息
    作者简介:

    陈书航(1999—),男,河南鹤壁人,博士研究生,主要研究方向为刮板输送机智能监测与控制、硬件在环仿真,E-mail:TS21050003A31@cumt.edu.cn

    通讯作者:

    王世博(1979—),男,河北新河人,教授,博士研究生导师,主要研究方向为智能矿山装备,E-mail:wangshb@cumt.edu.cn

  • 中图分类号: TD634.2

Study on the spatiotemporal distribution of coal flow in the scraper conveyor of fully mechanized mining face

  • 摘要: 基于传感器的煤流特征研究受传感器监测范围有限的影响,无法对刮板输送机整机煤流特征进行研究;基于模型仿真的煤流特征研究缺乏对开采工艺的考虑,不能预测刮板输送机整机的煤流时空分布。针对综采工作面刮板输送机整机运载煤流特征难以监测的问题,结合综采工作面开采工艺,通过分析采煤机截割装载和刮板输送机运载煤流过程,建立了各工艺段下不同装载方式的刮板输送机瞬时装载体积、截面积的数学模型;将刮板输送机运载煤流过程划分为煤流平移和装载煤流叠加,基于有限元方法构建了综采工作面刮板输送机煤流时空分布预测模型。利用该模型仿真分析了开采工艺周期内刮板输送机的煤流时空分布特征:相比于中部正常截割阶段,端头截割阶段的煤流时空分布较为复杂;中部槽装载煤流的最大截面积出现在调换滚筒位置阶段;刮板输送机运载煤流体积在采煤机上行和下行过程中变化趋势相反,变化趋势由采煤机牵引方向决定。利用某矿工作面采煤机和刮板输送机实际运行数据作为模型的输入参数,根据预测的煤流时空分布计算过煤量,结果表明:过煤量预测结果与现场实测的变化趋势一致,累计过煤量预测误差为9.24%,在采煤机进刀过程和上行阶段的固定时间段内过煤量预测误差分别为13.19%和13.78%,证明了煤流时空分布预测模型的正确性。

     

  • 图  1  综采工作面端部斜切进刀开采工艺

    Figure  1.  Inclined cutting feed mining technology at the end of fully mechanized mining face

    图  2  截割顶煤时刮板输送机装载体积

    Figure  2.  Loading volume of scraper conveyor during top coal cutting

    图  3  截割底煤时刮板输送机装载体积

    Figure  3.  Loading volume of scraper conveyor during bottom coal cutting

    图  4  工作面端头采煤机截割工艺流程

    Figure  4.  Shearer cutting process at the end of working face

    图  5  前滚筒截割时刮板输送机运载煤流过程

    Figure  5.  Coal flow process of carried by scraper conveyor during front drum cutting

    图  6  刮板输送机煤流时空分布预测模型

    Figure  6.  Prediction model of spatiotemporal distribution of coal flow in scraper conveyor

    图  7  采煤机位置和牵引速度

    Figure  7.  Shearer position and traction speed

    图  8  刮板输送机水平方向的铺设曲线

    Figure  8.  Horizontal laying curve of scraper conveyor

    图  9  不同装载方式的瞬时装载截面积

    Figure  9.  Instantaneous loading cross-sectional area of different loading modes

    图  10  开采工艺周期内刮板输送机煤流时空分布

    Figure  10.  Spatiotemporal distribution of coal flow in scraper conveyor during mining process cycle

    图  11  刮板输送机运载煤流体积

    Figure  11.  Volume of coal flow in scraper conveyor

    图  12  采煤机状态参数

    Figure  12.  Shearer state parameters

    图  13  刮板输送机煤流时空分布仿真结果

    Figure  13.  Simulation result of spatiotemporal distribution of coal flow in scraper conveyor

    图  14  过煤量预测与实际结果对比

    Figure  14.  Comparison between forecasted and actual coal throughput results

    表  1  工作面端头割煤和推溜情况

    Table  1.   Coal cutting and pushing at the end of working face

    运行状态前滚筒后滚筒推移浮煤
    a底部三角煤底煤
    b底部三角煤顶部三角煤
    c底煤顶部三角煤
    d弧形煤层空采
    e底部三角煤顶煤
    f底部三角煤顶部三角煤
    g底煤顶部三角煤
    h弧形煤层空采
    i空采顶煤
    j空采空采
    k空采空采
    下载: 导出CSV

    表  2  仿真参数

    Table  2.   Simulation parameters

    参数
    滚筒直径D/m 3
    筒毂直径Dt/m 1.52
    采煤机两滚筒中心点距离lsh/m 16.89
    采煤机截割深度lj/m 0.865
    刮板链移动速度va/(m·s−1 0.9
    刮板输送机长度la/m 300
    中部槽高度ha/m 0.263
    刮板输送机弯曲段长度lw/m 27
    煤岩碎胀系数km 1.2
    煤的自然安息角α/(°) 45
    截割顶煤后剩余煤层高度hs/m 2
    下载: 导出CSV

    表  3  工作面设备参数

    Table  3.   Equipment parameters of working face

    参数
    滚筒直径D/m 2.24
    筒毂直径Dt/m 1.1
    采煤机两滚筒中心点距离lsh/m 12.75
    采煤机截割深度lj/m 0.80
    刮板输送机与煤壁之间的距离lb/m 0.48
    刮板输送机长度la/m 220
    中部槽高度ha/m 0.345
    煤岩碎胀系数km 1.2
    煤的自然安息角α/(°) 45
    下载: 导出CSV
  • [1] STOICUTA O,PANA T. Modeling and simulation of the coal flow control system for the longwall scraper conveyor[J]. Annals of the University of Craiova,2016(40):101-108.
    [2] 郭忠平,马其华,辛恒奇. 煤矿开采新技术[M]. 徐州:中国矿业大学出版社,1999.

    GUO Zhongping,MA Qihua,XIN Hengqi. New technology of coal mining[M]. Xuzhou:China University of Mining & Technology Press,1999.
    [3] 刘庆华,马柯峰. 刮板输送机智能控制技术现状与展望[J]. 智能矿山,2022,3(3):10-16.

    LIU Qinghua,MA Kefeng. Present situation and prospect of intelligent control technology for scraper conveyor[J]. Journal of Intelligent Mine,2022,3(3):10-16.
    [4] 葛世荣,郝尚清,张世洪,等. 我国智能化采煤技术现状及待突破关键技术[J]. 煤炭科学技术,2020,48(7):28-46.

    GE Shirong,HAO Shangqing,ZHANG Shihong,et al. Status of intelligent coal mining technology and potential key technologies in China[J]. Coal Science and Technology,2020,48(7):28-46.
    [5] WANG Yuan,GUO Wei,ZHAO Shuanfeng,et al. A scraper conveyor coal flow monitoring method based on speckle structured light data[J]. Applied Sciences,2022,12(14). DOI: 10.3390/app12146955.
    [6] 逯圣辉. 基于机器视觉的带式输送机动态煤量计量研究[D]. 邯郸:河北工程大学,2020.

    LU Shenghui. Research on dynamic coal quantity measurement of belt conveyor based on machine vision[D]. Handan:Hebei University of Engineering,2020.
    [7] 孟凡芹,王耀才. 煤矿井下带式输送机煤流图像识别方法的研究[J]. 煤炭学报,2003,28(1):91-95.

    MENG Fanqin,WANG Yaocai. Study of the methods for recognizing the coal flow image of coal mine's conveyer belt[J]. Journal of China Coal Society,2003,28(1):91-95.
    [8] ZHANG Li,HE Rongjun. A multi points ultrasonic detection method for material flow of belt conveyor[C]. Young Scientists Forum,Shanghai,2018. DOI: 10.1117/12.2317513.
    [9] 张丽. 一种带式输送机物料流量多点超声检测方法[J]. 工矿自动化,2017,43(5):62-65.

    ZHANG Li. A multi points ultrasonic detection method for material flow of belt conveyor[J]. Industry and Mine Automation,2017,43(5):62-65.
    [10] 胡而已,叶兰,孙益壮,等. 综放工作面放煤量激光扫描自适应监测技术研究[J]. 中国煤炭,2022,48(11):57-66.

    HU Eryi,YE Lan,SUN Yizhuang,et al. Study on laser scanning adaptive monitoring technology for coal caving volume in fully mechanized top-coal caving face[J]. China Coal,2022,48(11):57-66.
    [11] 胡而已. 基于激光扫描的综放工作面放煤量智能监测技术[J]. 煤炭科学技术,2022,50(2):244-251.

    HU Eryi. Intelligent monitoring technology of coal caving in fully-mechanized caving face based on laser scanning[J]. Coal Science and Technology,2022,50(2):244-251.
    [12] BETZ R E,BROADFOOT A. Mechanical modelling of the armoured face conveyor of a longwall mining system[R]. Callaghan:University of Newcastle,1994.
    [13] 刘建伟,韩存地,刘安强,等. 刮板输送机煤流动态分布模型[J]. 矿山机械,2022,50(4):1-6.

    LIU Jianwei,HAN Cundi,LIU Anqiang,et al. Model of dynamic coal flow distribution on scraper conveyor[J]. Mining & Processing Equipment,2022,50(4):1-6.
    [14] 刘建伟. 刮板输送机煤量分布计算及煤层高度控制[J]. 新疆有色金属,2022,45(2):69-70.

    LIU Jianwei. Coal quantity distribution calculation and coal seam height control of scraper conveyor[J]. Xingjiang Youse Jinshu,2022,45(2):69-70.
    [15] WANG Yanping,WANG Shaoying. Coordinated speed planning strategy of scraper conveyor and shearer based on scraper conveyor loads analysis[J]. IOP Conference Series:Earth and Environmental Science,2019,267(4). DOI: 10.1088/1755-1315/267/4/042044.
    [16] STOICUTA O,PANA T,MANDRESCU C. The control system analysis of the coal flow on the scrapers conveyor in a longwall mining system[C]. International Conference on Applied and Theoretical Electricity,Craiova,2016:1-10.
    [17] 王力军,王会枝,吴宗泽. 煤矿综采工作面“三机”联动控制策略研究[J]. 煤矿机械,2015,36(3):90-91.

    WANG Lijun,WANG Huizhi,WU Zongze. Fully mechanized coal mining face in fewer people "three machine" linkage control strategy[J]. Coal Mine Machinery,2015,36(3):90-91.
    [18] 李旺年. 基于虚拟现实技术的综采“三机”联动过程仿真[D]. 西安:西安科技大学,2014.

    LI Wangnian. Fully mechanized "three-machine" linkage process simulation based on virtual reality technology[D]. Xi'an:Xi'an University of Science and Technology,2014.
    [19] 张丽丽,谭超,王忠宾,等. 基于遗传算法的采煤机记忆截割路径优化[J]. 煤炭工程,2011,43(2):111-113.

    ZHANG Lili,TAN Chao,WANG Zhongbin,et al. Optimization of memory cutting path of shearer based on genetic algorithm[J]. Coal Engineering,2011,43(2):111-113.
    [20] 王世博,张辉. 综采工作面推移动力学模型与仿真分析[J]. 机械工程学报,2022,58(7):117-130. doi: 10.3901/JME.2022.07.117

    WANG Shibo,ZHANG Hui. Dynamic model and simulation analysis of advancement of fully mechanized mining face[J]. Journal of Mechanical Engineering,2022,58(7):117-130. doi: 10.3901/JME.2022.07.117
    [21] 付翔,王然风,赵阳升. 液压支架群组跟机推进行为的智能决策模型[J]. 煤炭学报,2020,45(6):2065-2077.

    FU Xiang,WANG Ranfeng,ZHAO Yangsheng. Intelligent decision-making model on the of hydraulic supports group advancing behavior to follow shearer[J]. Journal of China Coal Society,2020,45(6):2065-2077.
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  103
  • HTML全文浏览量:  33
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-05
  • 修回日期:  2024-09-29
  • 网络出版日期:  2024-08-02

目录

    /

    返回文章
    返回