Study on the spatiotemporal distribution of coal flow in the scraper conveyor of fully mechanized mining face
-
摘要: 基于传感器的煤流特征研究受传感器监测范围有限的影响,无法对刮板输送机整机煤流特征进行研究;基于模型仿真的煤流特征研究缺乏对开采工艺的考虑,不能预测刮板输送机整机的煤流时空分布。针对综采工作面刮板输送机整机运载煤流特征难以监测的问题,结合综采工作面开采工艺,通过分析采煤机截割装载和刮板输送机运载煤流过程,建立了各工艺段下不同装载方式的刮板输送机瞬时装载体积、截面积的数学模型;将刮板输送机运载煤流过程划分为煤流平移和装载煤流叠加,基于有限元方法构建了综采工作面刮板输送机煤流时空分布预测模型。利用该模型仿真分析了开采工艺周期内刮板输送机的煤流时空分布特征:相比于中部正常截割阶段,端头截割阶段的煤流时空分布较为复杂;中部槽装载煤流的最大截面积出现在调换滚筒位置阶段;刮板输送机运载煤流体积在采煤机上行和下行过程中变化趋势相反,变化趋势由采煤机牵引方向决定。利用某矿工作面采煤机和刮板输送机实际运行数据作为模型的输入参数,根据预测的煤流时空分布计算过煤量,结果表明:过煤量预测结果与现场实测的变化趋势一致,累计过煤量预测误差为9.24%,在采煤机进刀过程和上行阶段的固定时间段内过煤量预测误差分别为13.19%和13.78%,证明了煤流时空分布预测模型的正确性。Abstract: Research on coal flow characteristics based on sensors is limited by the restricted monitoring range of sensors, making it impossible to study the coal flow characteristics of the entire scraper conveyor. Additionally, research on coal flow characteristics based on model simulations often lacks consideration of mining processes, preventing the prediction of the spatiotemporal distribution of coal flow across the entire scraper conveyor. To address the issue of difficulty in monitoring the coal flow characteristics of the entire scraper conveyor in a fully mechanized mining face, this study integrated the mining process of the fully mechanized face. By analyzing the processes of coal cutting and loading by the shearer and the coal transportation by the scraper conveyor, a mathematical model for the instantaneous loading volume and cross-sectional area of the scraper conveyor under different loading methods in various process segments was established. The coal flow transportation process of the scraper conveyor was divided into coal flow translation and loaded coal flow superposition, and a spatiotemporal distribution prediction model for coal flow on the fully mechanized face scraper conveyor was developed based on the finite element method. Using this model, the spatiotemporal distribution characteristics of coal flow on the scraper conveyor during the mining process cycle were analyzed through simulation. Compared to the normal cutting stage in the middle, the spatiotemporal distribution of coal flow was more complex during the cutting stage at the ends. The maximum cross-sectional area of the loaded coal flow in the middle trough occurred during the stage of drum swapping. The volume of coal flow transported by the scraper conveyor changed in opposite trends during the upward and downward movements of the shearer, with the trend determined by the shearer's traction direction. Actual operating data from a shearer and scraper conveyor in a mine were used as input parameters for the model, and the coal volume was calculated based on the predicted spatiotemporal distribution. The results showed that the predicted trend of coal volume was consistent with on-site measurements, with a cumulative coal volume prediction error of 9.24%. The coal volume prediction errors during the fixed time periods of the shearer's cutting process and upward movement stage were 13.19% and 13.78%, respectively, demonstrating the accuracy of the spatiotemporal distribution prediction model for coal flow.
-
表 1 工作面端头割煤和推溜情况
Table 1. Coal cutting and pushing at the end of working face
运行状态 前滚筒 后滚筒 推移浮煤 a 底部三角煤 底煤 否 b 底部三角煤 顶部三角煤 是 c 底煤 顶部三角煤 是 d 弧形煤层 空采 否 e 底部三角煤 顶煤 否 f 底部三角煤 顶部三角煤 否 g 底煤 顶部三角煤 否 h 弧形煤层 空采 否 i 空采 顶煤 否 j 空采 空采 是 k 空采 空采 是 表 2 仿真参数
Table 2. Simulation parameters
参数 值 滚筒直径D/m 3 筒毂直径Dt/m 1.52 采煤机两滚筒中心点距离lsh/m 16.89 采煤机截割深度lj/m 0.865 刮板链移动速度va/(m·s−1) 0.9 刮板输送机长度la/m 300 中部槽高度ha/m 0.263 刮板输送机弯曲段长度lw/m 27 煤岩碎胀系数km 1.2 煤的自然安息角α/(°) 45 截割顶煤后剩余煤层高度hs/m 2 表 3 工作面设备参数
Table 3. Equipment parameters of working face
参数 值 滚筒直径D/m 2.24 筒毂直径Dt/m 1.1 采煤机两滚筒中心点距离lsh/m 12.75 采煤机截割深度lj/m 0.80 刮板输送机与煤壁之间的距离lb/m 0.48 刮板输送机长度la/m 220 中部槽高度ha/m 0.345 煤岩碎胀系数km 1.2 煤的自然安息角α/(°) 45 -
[1] STOICUTA O,PANA T. Modeling and simulation of the coal flow control system for the longwall scraper conveyor[J]. Annals of the University of Craiova,2016(40):101-108. [2] 郭忠平,马其华,辛恒奇. 煤矿开采新技术[M]. 徐州:中国矿业大学出版社,1999.GUO Zhongping,MA Qihua,XIN Hengqi. New technology of coal mining[M]. Xuzhou:China University of Mining & Technology Press,1999. [3] 刘庆华,马柯峰. 刮板输送机智能控制技术现状与展望[J]. 智能矿山,2022,3(3):10-16.LIU Qinghua,MA Kefeng. Present situation and prospect of intelligent control technology for scraper conveyor[J]. Journal of Intelligent Mine,2022,3(3):10-16. [4] 葛世荣,郝尚清,张世洪,等. 我国智能化采煤技术现状及待突破关键技术[J]. 煤炭科学技术,2020,48(7):28-46.GE Shirong,HAO Shangqing,ZHANG Shihong,et al. Status of intelligent coal mining technology and potential key technologies in China[J]. Coal Science and Technology,2020,48(7):28-46. [5] WANG Yuan,GUO Wei,ZHAO Shuanfeng,et al. A scraper conveyor coal flow monitoring method based on speckle structured light data[J]. Applied Sciences,2022,12(14). DOI: 10.3390/app12146955. [6] 逯圣辉. 基于机器视觉的带式输送机动态煤量计量研究[D]. 邯郸:河北工程大学,2020.LU Shenghui. Research on dynamic coal quantity measurement of belt conveyor based on machine vision[D]. Handan:Hebei University of Engineering,2020. [7] 孟凡芹,王耀才. 煤矿井下带式输送机煤流图像识别方法的研究[J]. 煤炭学报,2003,28(1):91-95.MENG Fanqin,WANG Yaocai. Study of the methods for recognizing the coal flow image of coal mine's conveyer belt[J]. Journal of China Coal Society,2003,28(1):91-95. [8] ZHANG Li,HE Rongjun. A multi points ultrasonic detection method for material flow of belt conveyor[C]. Young Scientists Forum,Shanghai,2018. DOI: 10.1117/12.2317513. [9] 张丽. 一种带式输送机物料流量多点超声检测方法[J]. 工矿自动化,2017,43(5):62-65.ZHANG Li. A multi points ultrasonic detection method for material flow of belt conveyor[J]. Industry and Mine Automation,2017,43(5):62-65. [10] 胡而已,叶兰,孙益壮,等. 综放工作面放煤量激光扫描自适应监测技术研究[J]. 中国煤炭,2022,48(11):57-66.HU Eryi,YE Lan,SUN Yizhuang,et al. Study on laser scanning adaptive monitoring technology for coal caving volume in fully mechanized top-coal caving face[J]. China Coal,2022,48(11):57-66. [11] 胡而已. 基于激光扫描的综放工作面放煤量智能监测技术[J]. 煤炭科学技术,2022,50(2):244-251.HU Eryi. Intelligent monitoring technology of coal caving in fully-mechanized caving face based on laser scanning[J]. Coal Science and Technology,2022,50(2):244-251. [12] BETZ R E,BROADFOOT A. Mechanical modelling of the armoured face conveyor of a longwall mining system[R]. Callaghan:University of Newcastle,1994. [13] 刘建伟,韩存地,刘安强,等. 刮板输送机煤流动态分布模型[J]. 矿山机械,2022,50(4):1-6.LIU Jianwei,HAN Cundi,LIU Anqiang,et al. Model of dynamic coal flow distribution on scraper conveyor[J]. Mining & Processing Equipment,2022,50(4):1-6. [14] 刘建伟. 刮板输送机煤量分布计算及煤层高度控制[J]. 新疆有色金属,2022,45(2):69-70.LIU Jianwei. Coal quantity distribution calculation and coal seam height control of scraper conveyor[J]. Xingjiang Youse Jinshu,2022,45(2):69-70. [15] WANG Yanping,WANG Shaoying. Coordinated speed planning strategy of scraper conveyor and shearer based on scraper conveyor loads analysis[J]. IOP Conference Series:Earth and Environmental Science,2019,267(4). DOI: 10.1088/1755-1315/267/4/042044. [16] STOICUTA O,PANA T,MANDRESCU C. The control system analysis of the coal flow on the scrapers conveyor in a longwall mining system[C]. International Conference on Applied and Theoretical Electricity,Craiova,2016:1-10. [17] 王力军,王会枝,吴宗泽. 煤矿综采工作面“三机”联动控制策略研究[J]. 煤矿机械,2015,36(3):90-91.WANG Lijun,WANG Huizhi,WU Zongze. Fully mechanized coal mining face in fewer people "three machine" linkage control strategy[J]. Coal Mine Machinery,2015,36(3):90-91. [18] 李旺年. 基于虚拟现实技术的综采“三机”联动过程仿真[D]. 西安:西安科技大学,2014.LI Wangnian. Fully mechanized "three-machine" linkage process simulation based on virtual reality technology[D]. Xi'an:Xi'an University of Science and Technology,2014. [19] 张丽丽,谭超,王忠宾,等. 基于遗传算法的采煤机记忆截割路径优化[J]. 煤炭工程,2011,43(2):111-113.ZHANG Lili,TAN Chao,WANG Zhongbin,et al. Optimization of memory cutting path of shearer based on genetic algorithm[J]. Coal Engineering,2011,43(2):111-113. [20] 王世博,张辉. 综采工作面推移动力学模型与仿真分析[J]. 机械工程学报,2022,58(7):117-130. doi: 10.3901/JME.2022.07.117WANG Shibo,ZHANG Hui. Dynamic model and simulation analysis of advancement of fully mechanized mining face[J]. Journal of Mechanical Engineering,2022,58(7):117-130. doi: 10.3901/JME.2022.07.117 [21] 付翔,王然风,赵阳升. 液压支架群组跟机推进行为的智能决策模型[J]. 煤炭学报,2020,45(6):2065-2077.FU Xiang,WANG Ranfeng,ZHAO Yangsheng. Intelligent decision-making model on the of hydraulic supports group advancing behavior to follow shearer[J]. Journal of China Coal Society,2020,45(6):2065-2077.