A positioning solution method for roadheader under optical target occlusion conditions
-
摘要: 针对目前常用的基于惯导+视觉测量+光学靶标的掘进机组合式导航定位存在的光学靶标被遮挡情况下掘进机定位中断问题,提出了一种光学靶标遮挡条件下掘进机定位解算方法。首先,采集4个呈矩形分布的靶标点组成的光学靶标在无遮挡情况下的图像,得到靶标点在相机内成像光斑的像素坐标并构造成矩形,再按照一定比例扩大构造辅助矩形区域框。其次,采集部分靶标点被遮挡情况下的图像,得到无遮挡靶标点在相机内成像光斑的像素坐标,根据靶标点的成像光斑与辅助矩形区域框顶点的欧氏距离,确定无遮挡靶标点与成像光斑的对应关系,进而确定被遮挡的靶标点。然后,利用已知的靶标几何尺寸和惯导提供的靶标姿态信息,建立投影后的靶标点与成像光斑的对应关系,进而求解出被遮挡靶标点对应的光斑像素坐标。最后,利用N点位姿透视求解(PNP)算法求得光学靶标中心位置的空间坐标,实现掘进机定位解算。试验结果表明,光学靶标被遮挡情况下,通过推算被遮挡靶标点对应的光斑像素坐标,可以解决掘进机定位中断问题,保证了掘进机定位的实时性,且定位误差满足掘进机实际定位需求。Abstract: In order to solve the problem of interruption in the positioning of roadheader in the case that the optical target is blocked under the current commonly used integrated navigation positioning of roadheader based on "inertial navigation+visual measurement+optical target", a positioning solution method for roadheader under optical target occlusion occlusion is proposed. Firstly, the method collects images of an optical target composed of four rectangular distributed target points in unblocked conditions, obtains the pixel coordinates of the imaging spot of the target points in the camera, and constructs a rectangle. Then, the method expands and constructs an auxiliary rectangular area box according to a certain proportion. Secondly, the method collects images of partially blocked target points, obtains the pixel coordinates of the imaging spot of the unblocked target points in the camera. The method determines the corresponding relationship between the unblocked target points and the imaging spot based on the Euclidean distance between the imaging spot of the target points and the vertex of the auxiliary rectangular area box, thereby determining the blocked target points. Thirdly, using the known geometric dimensions of the target and the target attitude information provided by inertial navigation, the method establishes the corresponding relationship between the projected target point and the imaging spot, and then solves for the pixel coordinates of the spot corresponding to the blocked target point. Finally, the spatial coordinates of the center position of the optical target are obtained using the perspective-N-point (PNP) algorithm to achieve the positioning solution of the roadheader. The experimental results show that when the optical target is blocked, by calculating the pixel coordinates of the light spot corresponding to the blocked target point, the problem of interruption in the positioning of the roadheader can be solved. It ensures the real-time positioning of the roadheader, and the positioning error meets the actual positioning requirements of the roadheader.
-
表 1 不同距离下掘进机定位试验结果
Table 1. Experimental results of roadheader positioning at different distances
掘进机距激光导引装置距离/m 姿态角/(°) 靶标点 定位结果/mm 定位误差/mm x y z Δx Δy Δz 15 俯仰角:−0.11 A,B,C,D 304 14925 −903 − − − A,B,C 303 14900 −902 1 25 −1 A,B,D 303 14920 −904 1 5 1 横滚角:−0.35 A,C,D 304 14918 −902 0 7 −1 B,C,D 304 14938 −904 0 −13 1 A,B 305 14935 −903 −1 −10 0 航向偏角:−1.14 C,D 303 14939 −904 1 −14 1 A,D 305 14960 −904 −1 −35 1 B,C 303 14890 −904 1 35 1 25 俯仰角:0.20 A,B,C,D 258 24951 −943 − − − A,B,C 259 24919 −939 −1 32 −4 A,B,D 258 24972 −947 0 −21 4 横滚角:0.11 A,C,D 258 24917 −940 0 34 −3 B,C,D 258 24978 −947 0 −27 4 A,B 259 24926 −941 −1 25 −2 航向偏角:0.06 C,D 258 24924 −942 0 27 −1 A,D 259 24977 −943 −1 −26 0 B,C 258 24962 −943 0 −11 0 40 俯仰角:−0.12 A,B,C,D 49 40036 −869 − − − A,B,C 49 40069 −869 0 −33 0 A,B,D 49 40052 −870 0 −16 1 横滚角:−0.22 A,C,D 49 40007 −868 0 29 −1 B,C,D 48 40015 −871 1 21 2 A,B 50 40093 −872 −1 −57 3 航向偏角:−1.07 C,D 48 40015 −870 1 21 1 A,D 50 39974 −869 −1 62 0 B,C 49 40023 −870 0 13 1 60 俯仰角:−0.24 A,B,C,D 16 60312 −997 − − − A,B,C 16 60367 −1000 0 −54 3 A,B,D 16 60268 −994 0 44 −3 横滚角:0.22 A,C,D 16 60356 −1000 0 −44 3 B,C,D 16 60259 −994 0 53 −3 A,B 16 60381 −999 0 −69 2 航向偏角:−0.37 C,D 17 60345 −998 −1 −33 1 A,D 16 60260 −997 0 52 0 B,C 15 60262 −996 1 50 −1 -
[1] 王步康. 煤矿巷道掘进技术与装备的现状及趋势分析[J]. 煤炭科学技术,2020,48(11):1-11.WANG Bukang. Current status and trend analysis of roadway driving technology and equipment in coal mine[J]. Coal Science and Technology,2020,48(11):1-11. [2] 胡兴涛,朱涛,苏继敏,等. 煤矿巷道智能化掘进感知关键技术[J]. 煤炭学报,2021,46(7):2123-2135.HU Xingtao,ZHU Tao,SU Jimin,et al. Key technology of intelligent drivage perception in coal mine roadway[J]. Journal of China Coal Society,2021,46(7):2123-2135. [3] 刘送永,张德义. 巷道掘进机智能化技术研究现状及展望[J]. 工矿自动化,2019,45(10):23-28.LIU Songyong,ZHANG Deyi. Research status and prospect of intelligentization technology of roadheader[J]. Industry and Mine Automation,2019,45(10):23-28. [4] 张国喜. 悬臂式掘进机惯性测量系统的改进与试验[J]. 江西煤炭科技,2021(2):238-240. doi: 10.3969/j.issn.1006-2572.2021.02.080ZHANG Guoxi. Transformation and experiment on inertial measurement system in cantilever roadheader[J]. Jiangxi Coal Science & Technology,2021(2):238-240. doi: 10.3969/j.issn.1006-2572.2021.02.080 [5] 田原. 悬臂式掘进机视觉定位方法研究[J]. 矿山机械,2019,47(3):8-12. doi: 10.3969/j.issn.1001-3954.2019.03.003TIAN Yuan. Research on vision positioning method for boom-type roadheader[J]. Mining & Processing Equipment,2019,47(3):8-12. doi: 10.3969/j.issn.1001-3954.2019.03.003 [6] 刘超,符世琛,成龙,等. 基于TSOA定位原理混合算法的掘进机位姿检测方法[J]. 煤炭学报,2019,44(4):1255-1264.LIU Chao,FU Shichen,CHENG Long,et al. Pose detection method based on hybrid algorithm of TSOA positioning principle for roadheader[J]. Journal of China Coal Society,2019,44(4):1255-1264. [7] 石勇. 基于三维激光雷达的掘进机实时位姿纠偏系统[J]. 煤矿机械,2023,44(5):64-66.SHI Yong. Real-time pose correction system of roadheader based on three-dimensional lidar[J]. Coal Mine Machinery,2023,44(5):64-66. [8] 薛光辉,张云飞,候称心,等. 基于激光靶向跟踪的掘进机位姿测量方法[J]. 矿业科学学报,2020,5(4):416-422.XUE Guanghui,ZHANG Yunfei,HOU Chenxin,et al. Measurement of roadheader position and posture based on laser target tracking[J]. Journal of Mining Science And Technology,2020,5(4):416-422. [9] 杨文娟,张旭辉,马宏伟,等. 悬臂式掘进机机身及截割头位姿视觉测量系统研究[J]. 煤炭科学技术,2019,47(6):50-57.YANG Wenjuan,ZHANG Xuhui,MA Hongwei,et al. Research on position and posture measurement system of body and cutting head for boom-type roadheader based on machine vision[J]. Coal Science and Technology,2019,47(6):50-57. [10] 杨文娟,张旭辉,张超,等. 悬臂式掘进机器人巷道成形智能截割控制系统研究[J]. 工矿自动化,2019,45(9):40-46.YANG Wenjuan,ZHANG Xuhui,ZHANG Chao,et al. Research on intelligent cutting control system for roadway forming of boom-type tunneling robot[J]. Industry and Mine Automation,2019,45(9):40-46. [11] 刘豪. 捷联惯导与里程计组合的矿用掘进机自主导航定位系统[D]. 重庆:重庆大学,2020.LIU Hao. An autonomous navigation system of mining TBM based on the combination of SINS and OD[D]. Chongqing:Chongqing University,2020. [12] 张旭辉,刘博兴,张超,等. 掘进机全站仪与捷联惯导组合定位方法[J]. 工矿自动化,2020,46(9):1-7.ZHANG Xuhui,LIU Boxing,ZHANG Chao,et al. Roadheader positioning method combining total station and strapdown inertial navigation system[J]. Industry and Mine Automation,2020,46(9):1-7. [13] 崔玉明. 煤矿巷道掘进机视觉/惯性融合自主定位关键技术研究[D]. 徐州:中国矿业大学,2021.CUI Yuming. Key technology research of visual/inertial fusion autonomous positioning for roadheader in coal mine[D]. Xuzhou:China University of Mining and Technology,2021. [14] YANG Wenjuan,ZHANG Xuhui,MA Hongwei,et al. Infrared LEDs-based pose estimation with underground camera model for boom-type roadheader in coal mining[J]. IEEE Access,2019,7:33698-33712. doi: 10.1109/ACCESS.2019.2904097 [15] 雷孟宇,张旭辉,杨文娟,等. 煤矿掘进装备视觉位姿检测与控制研究现状与趋势[J]. 煤炭学报,2021,46(增刊2):1135-1148.LEI Mengyu,ZHANG Xuhui,YANG Wenjuan,et al. Current status and trend of research on visual pose detection and control of heading equipment in coal mines[J]. Journal of China Coal Society,2021,46(S2):1135-1148. [16] 黄东,杨凌辉,罗文,等. 基于视觉/惯导的掘进机实时位姿测量方法研究[J]. 激光技术,2017,41(1):19-23.HUANG Dong,YANG Linghui,LUO Wen,et al. Study on measurement method of realtime position and attitude of roadheader based on vision/inertial navigation system[J]. Laser Technology,2017,41(1):19-23. [17] 田原. 悬臂式掘进机导航技术现状及其发展方向[J]. 工矿自动化,2017,43(8):37-43.TIAN Yuan. Present situation and development direction of navigation technology of boom-type roadheader[J]. Industry and Mine Automation,2017,43(8):37-43. [18] 田原. 基于四点式光靶的掘进机自动定位方法研究[J]. 煤炭科学技术,2018,46(12):35-40.TIAN Yuan. Research on automatic positioning method of roadheader based on four point light target[J]. Coal Science and Technology,2018,46(12):35-40. [19] 陈和,杨志浩,郭磐,等. 激光光斑中心高精度定位算法研究[J]. 北京理工大学学报,2016,36(2):181-185.CHEN He,YANG Zhihao,GUO Pan,et al. Research of the high precision laser spot center location algorithm[J]. Transactions of Beijing Institute of Technology,2016,36(2):181-185. [20] 李道萍,杨波. 高精度光斑中心定位算法[J]. 光学仪器,2018,40(4):20-25.LI Daoping,YANG Bo. High-precision center location algorithm of light spot[J]. Optical Instrument,2018,40(4):20-25. [21] GB 50213—2010 煤矿井巷工程质量验收规范[S].GB 50213-2010 Code for acceptance of shaft sinking and drifting of coal mine[S].