留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

采煤机滚筒工作性能优化研究

王宏伟 郭军军 梁威 耿毅德 陶磊 李进

王宏伟,郭军军,梁威,等. 采煤机滚筒工作性能优化研究[J]. 工矿自动化,2024,50(4):133-143.  doi: 10.13272/j.issn.1671-251x.2023100095
引用本文: 王宏伟,郭军军,梁威,等. 采煤机滚筒工作性能优化研究[J]. 工矿自动化,2024,50(4):133-143.  doi: 10.13272/j.issn.1671-251x.2023100095
WANG Hongwei, GUO Junjun, LIANG Wei, et al. Research on optimization of working performance of shearer drum[J]. Journal of Mine Automation,2024,50(4):133-143.  doi: 10.13272/j.issn.1671-251x.2023100095
Citation: WANG Hongwei, GUO Junjun, LIANG Wei, et al. Research on optimization of working performance of shearer drum[J]. Journal of Mine Automation,2024,50(4):133-143.  doi: 10.13272/j.issn.1671-251x.2023100095

采煤机滚筒工作性能优化研究

doi: 10.13272/j.issn.1671-251x.2023100095
基金项目: 山西省揭榜招标项目(20201101005);山西省基础研究计划资助项目(202203021222082)。
详细信息
    作者简介:

    王宏伟(1977—),女,黑龙江勃利人,教授,博士,博士研究生导师,研究方向为煤机装备智能化、智慧矿山,E-mail:lntuwhw@126.com

    通讯作者:

    梁威(1993—),男,山西太原人,助理研究员,博士,研究方向为煤机装备智能化、智能控制, E-mail:liangwei01@tyut.edu.cn

  • 中图分类号: TD421.6

Research on optimization of working performance of shearer drum

  • 摘要: 在实际生产中,截割破碎过程是多作用耦合的结果,离散元法(DEM)与多体动力学(MBD)双向耦合技术可实现煤机设备与煤壁的信息交互,符合实际生产情况,具有较大的优越性。为提高采煤机滚筒的工作性能,基于DEM−MBD双向耦合机理,结合力学性能试验和模拟试验得到实际工况参数,采用仿真软件EDEM和RecurDyn建立了采煤机滚筒截割煤壁的双向耦合模型,对仿真过程中滚筒所受的转矩和截割力进行分析,证明耦合效果和截割效果较好。设计了单因素试验和正交试验,分析了滚筒运行参数对工作性能的影响规律,并利用SPSS软件得到滚筒转速、截割深度、牵引速度对截割比能耗、装煤率、载荷波动系数的影响程度,通过现场试验验证了模型的可行性。构建了以滚筒转速、截割深度、牵引速度为决策变量,以截割比能耗、装煤率和载荷波动系数为目标的多目标优化模型,利用改进多目标灰狼(MOGWO)算法和优劣解距离法(TOPSIS)对模型进行求解,得出当滚筒转速为31.12 r/min、截割深度为639.4 mm、牵引速度为5.58 m/min时,采煤机滚筒的工作性能最优,此时截割比能耗为0.467 7 kW·h/m3,装煤率为43.01%,载荷波动系数为0.327 8。

     

  • 图  1  颗粒接触模型

    Figure  1.  Particle contact model

    图  2  煤岩物理力学性能试验过程

    Figure  2.  Experimental process of coal rock physical and mechanical properties

    图  3  模拟仿真与试验对比

    Figure  3.  Comparison of simulation and experiment

    图  4  煤壁模拟方法

    Figure  4.  Coal wall simulation method

    图  5  MBD建模和求解流程

    Figure  5.  Multibody dynamics modeling and solving process

    图  6  双向耦合原理

    Figure  6.  Bidirectional coupling principle

    图  7  EDEM−RecurDyn转矩

    Figure  7.  EDEM-RecurDyn torque

    图  8  滚筒截割力

    Figure  8.  Drum cutting force

    图  9  装煤区域

    Figure  9.  Coal loading area

    图  10  不同滚筒运行参数与工作性能关系

    Figure  10.  Relationship between different drum parameters and performance

    图  11  现场试验

    Figure  11.  Field experiment

    图  12  牵引速度与截割电流关系

    Figure  12.  Relationship between traction speed and cutting current

    图  13  不同滚筒转速下颗粒速度云图及曲线

    Figure  13.  Particle velocity clouds and curves at different drum speeds

    图  14  滚筒转速为40 r/min时的截割力

    Figure  14.  Cutting force at a drum speed of 40 r/min

    图  15  滚筒侵入煤岩的作用效果

    Figure  15.  The effect of drum intrusion on coal and rock

    图  16  多目标优化模型设计方案

    Figure  16.  Design scheme of multi-objective optimization model

    图  17  初始化种群分布

    Figure  17.  Initialize population distribution

    图  18  收敛因子改进前后曲线

    Figure  18.  Convergence factor curves before and after improvement

    图  19  不同算法生成的 Pareto解集分布

    Figure  19.  Distribution of Pareto solution sets generated by different algorithms

    表  1  煤岩物理力学参数

    Table  1.   Coal rock physical and mechanical parameters

    参数夹矸
    泊松比0.280.24
    密度/(kg·m−314002300
    弹性模量/GPa1.7317.81
    抗拉强度/MPa1.352.24
    抗压强度/MPa11.2528.6
    坚固性系数0.72.5
    下载: 导出CSV

    表  2  不同滚筒运行参数下的仿真结果

    Table  2.   Simulation results of different drum parameters

    方案 n/
    (r·min−1
    d/
    mm
    v/
    (m·min−1
    HW/
    (kW·h·m−3
    Q/% δ
    1−1 30 500 6 0.451 39 0.361 6
    1−2 40 500 6 0.502 41 0.402 9
    1−3 50 500 6 0.577 40 0.424 4
    1−4 60 500 6 0.629 38 0.435 0
    1−5 70 500 6 0.666 35 0.449 1
    2−1 40 450 6 0.504 42 0.416 8
    2−2 40 500 6 0.502 41 0.402 9
    2−3 40 550 6 0.503 39 0.386 8
    2−4 40 600 6 0.492 36 0.364 4
    2−5 40 650 6 0.489 35 0.357 5
    3−1 40 500 2 0.697 33 0.367 3
    3−2 40 500 3 0.627 38 0.389 8
    3−3 40 500 4 0.550 40 0.395 9
    3−4 40 500 5 0.535 42 0.400 3
    3−5 40 500 6 0.502 41 0.402 9
    下载: 导出CSV

    表  3  正交试验组合与结果

    Table  3.   Orthogonal test combinations and results

    方案 因素 HW/
    (kW·h·m−3
    Q/% δ
    n/
    (r·min−1
    d/
    mm
    v/
    (m·min−1
    1 30 450 2 0.643 31 0.342 8
    2 30 550 4 0.573 36 0.342 0
    3 30 650 6 0.455 33 0.321 2
    4 50 450 4 0.613 41 0.421 5
    5 50 550 6 0.575 35 0.409 0
    6 50 650 2 0.720 26 0.351 4
    7 70 450 6 0.661 38 0.460 1
    8 70 550 2 0.792 27 0.392 0
    9 70 650 4 0.688 31 0.381 2
    下载: 导出CSV

    表  4  相关性水平分析

    Table  4.   Correlation level analysis

    相关性 HW/
    (kW·h·m−3
    Q/% δ
    n/(r·min−1 A 0.685** −0.291 0.646**
    B 0.000 0.168 0.001
    d/mm A −0.026 −0.581** −0.585**
    B 0.903 0.003 0.003
    v/(m·min−1 A −0.719** 0.630** 0.375
    B 0.000 0.001 0.071
    下载: 导出CSV
  • [1] 王虹,王步康,张小峰,等. 煤矿智能快掘关键技术与工程实践[J]. 煤炭学报,2021,46(7):2068-2083.

    WANG Hong,WANG Bukang,ZHANG Xiaofeng,et al. Key technology and engineering practice of intelligent rapid heading in coal mine[J]. Journal of China Coal Society,2021,46(7):2068-2083.
    [2] 葛帅帅,秦大同,胡明辉. 突变工况下滚筒式采煤机调速控制策略研究[J]. 煤炭学报,2015,40(11):2569-2578.

    GE Shuaishuai,QIN Datong,HU Minghui. Research on drum shearer speed control strategies under impact conditions[J]. Journal of China Coal Society,2015,40(11):2569-2578.
    [3] XING Zhizhong,GUO Wei. Analysis and research on working performance of shearer based on discrete element method[J]. IEEE Access,2019,7:121321-121331. doi: 10.1109/ACCESS.2019.2937569
    [4] 赵丽娟,王雅东,王斌. 含夹矸煤层条件下采煤机螺旋滚筒工作性能分析与预测[J]. 中国机械工程,2021,32(8):976-986.

    ZHAO Lijuan,WANG Yadong,WANG Bin. Analysis and prediction of working performance of shearer spiral drums under coal seam with gangue[J]. China Mechanical Engineering,2021,32(8):976-986.
    [5] 张强,张晓宇. 不同工况下采煤机滚筒截割性能研究[J]. 应用力学学报,2021,38(6):2360-2368.

    ZHANG Qiang,ZHANG Xiaoyu. Cutting performance of shearer drum under different working conditions[J]. Chinese Journal of Applied Mechanics,2021,38(6):2360-2368.
    [6] 李明昊,牛昊,范佳艺,等. 采煤机螺旋滚筒装煤性能优化[J]. 工矿自动化,2022,48(10):129-135.

    LI Minghao,NIU Hao,FAN Jiayi,et al. Optimization of coal loading performance of shearer screw drum[J]. Journal of Mine Automation,2022,48(10):129-135.
    [7] 赵丽娟,王雅东,张美晨,等. 复杂煤层条件下采煤机自适应截割控制策略[J]. 煤炭学报,2022,47(1):541-563.

    ZHAO Lijuan,WANG Yadong,ZHANG Meichen,et al. Research on self-adaptive cutting control strategy of shearer in complex coal seam[J]. Journal of China Coal Society,2022,47(1):541-563.
    [8] 王雅东,赵丽娟,张美晨. 采煤机自适应调高控制策略[J]. 煤炭学报,2022,47(9):3505-3522.

    WANG Yadong,ZHAO Lijuan,ZHANG Meichen. Research on self-adaptive height adjustment control strategy of shearer[J]. Journal of China Coal Society,2022,47(9):3505-3522.
    [9] MA Haozhou,WANG Xuewen,LI Bo,et al. Study on the mechanical effect and wear behaviour of middle trough of a scraper conveyor based on DEM-MBD[J]. Proceedings of the Institution of Mechanical Engineers,Part J:Journal of Engineering Tribology,2022,236(7):1363-1374. doi: 10.1177/13506501211059259
    [10] 梁旭,郭佳毫,常毛毛,等. 矸石层形态对掘锚机截割特性影响仿真分析[J]. 工矿自动化,2023,49(3):93-99.

    LIANG Xu,GUO Jiahao,CHANG Maomao,et al. Simulation analysis of the influence of gangue layer morphology on the cutting characteristics of the roadheader bolter[J]. Journal of Mine Automation,2023,49(3):93-99.
    [11] 张美晨,赵丽娟,李明昊,等. 基于双向耦合法的采煤机螺旋滚筒振动特性分析[J]. 煤炭科学技术,2024,52(3):200-216.

    ZHANG Meichen,ZHAO Lijuan,LI Minghao,et al. Analysis and experimental study on the vibration characteristics of the spiral drum of a shearer based on two-way coupling method[J]. Coal Science and Technology,2024,52(3):200-216.
    [12] 王国强,郝万军,王继新. 离散单元法及其在EDEM上的实践[M]. 西安:西北工业大学出版社,2010:3-13.

    WANG Guoqiang,HAO Wanjun,WANG Jixin. Discrete unit method and its practice on EDEM[M]. Xi'an:Northwestern Polytechnical University Press,2010:3-13.
    [13] 金鑫. 采煤机螺旋滚筒截割含夹矸煤岩双向耦合作用机理及磨损特性研究[D]. 阜新:辽宁工程技术大学,2020.

    JIN Xin. Study on the two-way coupling mechanism and wear characteristics of shearer drum cutting coal-rock with gangue[D]. Fuxin:Liaoning Technical University,2020.
    [14] CHEN Zeren,CHEN Guoqiang,XUE Duomei. An approach to calibration of BPM bonding parameters for iron ore[J]. Powder Technology:An International Journal on the Science and Technology of Wet and Dry Particulate Systems,2021,381:245-254.
    [15] 赵丽娟,闻首杰,刘旭南. 仿真颗粒半径对模拟滚筒截割复杂煤层的影响研究[J]. 机械科学与技术,2020,39(1):52-57.

    ZHAO Lijuan,WEN Shoujie,LIU Xunan. The influence of simulated particle radius on complex coal seam of drum cutting[J]. Mechanical Science and Technology for Aerospace Engineering,2020,39(1):52-57.
    [16] ROJEK J,OÑATE E,LABRA C. Discrete element simulation of rock cutting[J]. International Journal of Rock Mechanics and Mining Sciences,2011,48(6):996-1010. doi: 10.1016/j.ijrmms.2011.06.003
    [17] 秦大同,王镇,胡明辉,等. 基于多目标优化的采煤机滚筒最优运动参数的动态匹配[J]. 煤炭学报,2015,40(增刊2):532-539.

    QIN Datong,WANG Zhen,HU Minghui,et al. Dynamic matching of optimal drum movement parameters of shearer based on multi-objective optimization[J]. Journal of China Coal Society,2015,40(S2):532-539.
    [18] 毛君,刘歆妍,陈洪月,等. 基于EDEM的采煤机滚筒工作性能的仿真研究[J]. 煤炭学报,2017,42(4):1069-1077.

    MAO Jun,LIU Xinyan,CHEN Hongyue,et al. Simulation of shearer drum cutting performance based on EDEM[J]. Journal of China Coal Society,2017,42(4):1069-1077.
    [19] 徐向宇. 综掘机截齿截割破煤机理及产尘规律研究[D]. 焦作:河南理工大学,2021.

    XU Xiangyu. Study on coal breaking mechanism and dust generation law of roadheader pick[D]. Jiaozuo:Henan Polytechnic University,2021.
    [20] MIRJALILI S,SAREMI S,MIRJALILI S M,et al. Multi-objective grey wolf optimizer:a novel algorithm for multi-criterion optimization[J]. Expert Systems with Applications,2016,47(1):106-119.
    [21] FARIS H,ALJARAH I,AL-BETAR M A,et al. Grey wolf optimizer:a review of recent variants and applications[J]. Neural Computing and Applications,2018,30(2):413-435. doi: 10.1007/s00521-017-3272-5
    [22] 王秋萍,王梦娜,王晓峰. 改进收敛因子和比例权重的灰狼优化算法[J]. 计算机工程与应用,2019,55(21):60-65,98.

    WANG Qiuping,WANG Mengna,WANG Xiaofeng. Improved grey wolf optimizer with convergence factor and proportional weight[J]. Computer Engineering and Applications,2019,55(21):60-65,98.
  • 加载中
图(19) / 表(4)
计量
  • 文章访问数:  114
  • HTML全文浏览量:  19
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-31
  • 修回日期:  2024-04-22
  • 网络出版日期:  2024-05-10

目录

    /

    返回文章
    返回