留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于红外热成像的煤矸识别方法研究

程刚 潘择烨 魏溢凡 陈杰

程刚,潘择烨,魏溢凡,等. 基于红外热成像的煤矸识别方法研究[J]. 工矿自动化,2024,50(4):69-77.  doi: 10.13272/j.issn.1671-251x.2023100086
引用本文: 程刚,潘择烨,魏溢凡,等. 基于红外热成像的煤矸识别方法研究[J]. 工矿自动化,2024,50(4):69-77.  doi: 10.13272/j.issn.1671-251x.2023100086
CHENG Gang, PAN Zeye, WEI Yifan, et al. Research on coal gangue recognition method based on infrared thermal imaging[J]. Journal of Mine Automation,2024,50(4):69-77.  doi: 10.13272/j.issn.1671-251x.2023100086
Citation: CHENG Gang, PAN Zeye, WEI Yifan, et al. Research on coal gangue recognition method based on infrared thermal imaging[J]. Journal of Mine Automation,2024,50(4):69-77.  doi: 10.13272/j.issn.1671-251x.2023100086

基于红外热成像的煤矸识别方法研究

doi: 10.13272/j.issn.1671-251x.2023100086
基金项目: 安徽省高校协同创新项目(GXXT-2021-076)。
详细信息
    作者简介:

    程刚(1986—),男,安徽桐城人,副教授,博士,研究方向为煤矿智能开采与光机电一体化,E-mail:chgmech@mail.ustc.edu.cn

    通讯作者:

    潘择烨(1999—),男,山东烟台人,硕士研究生,研究方向为矿山机电工程,E-mail:Panzeye6894@163.com

  • 中图分类号: TD67

Research on coal gangue recognition method based on infrared thermal imaging

  • 摘要: 基于重介选煤、跳汰选煤、浮选、干法选煤、γ射线检测法的煤矸分选方法投资成本高、分选效率低、环境污染严重,基于CCD相机的煤矸分选方法准确率不高,基于X射线的煤矸分选技术会危害工作人员的健康。红外热成像技术不受光照、粉尘影响,且不会对人体造成伤害。提出了一种基于红外热成像的煤矸识别方法。首先,煤和矸石在传送带的输送下经过加热区域,红外热成像仪监测经均匀加热后的煤和矸石中心点的温度,得到煤和矸石加热后的温度并对经加热区域均匀加热后的煤和矸石进行拍摄,得到煤和矸石的红外灰度图像和红外彩色图像。然后,选用高斯滤波对煤和矸石的红外灰度图像、红外彩色图像进行预处理并提取特征,将红外灰度图像的灰度均值、最大频数对应的灰度值特征和红外彩色图像的G通道一阶矩、G通道二阶矩特征作为分选特征,将上述4个特征作为分类模型的输入。最后,采用支持向量机(SVM)进行分类识别,从而达到识别煤和矸石的目的。实验结果表明:基于红外热成像的煤矸识别方法对烟煤、无烟煤、褐煤的分选准确率均达到了98%以上,有良好的分类效果。

     

  • 图  1  煤矸识别红外热成像实验装置

    Figure  1.  Experimental device for coal and gangue recognition

    图  2  煤矸加热后温度

    Figure  2.  Temperature of coal and gangue after heating

    图  3  煤矸样本图像

    Figure  3.  Images of coal and gangue samples

    图  4  煤样本图像的不同滤波处理结果

    Figure  4.  Results of different filtering process for a coal sample image

    图  5  矸石图像滤波结果

    Figure  5.  Gangue image filtering results

    图  6  灰度均值和最大频数对应的灰度值的分布曲线

    Figure  6.  Distribution curves of the grayscale mean and the gray value corresponding to the maximum frequency number

    图  7  煤矸石图像纹理特征的分布曲线

    Figure  7.  Distribution curves of texture features of coal and gangue images

    图  8  具有高区分度的煤矸石图像颜色特征分布曲线

    Figure  8.  Distribution curves of highly distinguishable colour features of coal and gangue images

    图  9  特征选择结果

    Figure  9.  Feature selection results

    表  1  煤矸石图像滤波结果

    Table  1.   Filtering results for coal and gangue images

    滤波方式 煤图像 矸石图像
    MSE PSNR MSE PSNR
    高斯滤波 7.1382 39.5949 1.9222 45.2929
    中值滤波 7.4326 39.4194 2.3143 44.4865
    均值滤波 17.9601 35.5877 9.7932 38.2216
    下载: 导出CSV

    表  2  煤矸石图像灰度特征分布范围

    Table  2.   Range of grayscale feature distribution of coal and gangue images

    样本 灰度均值 灰度方差 最大频数对应的灰度值 偏度
    89.8~163.3 106.9~3301.7 91.0~195.0 −1.8~0.7
    矸石 5.4~46.7 9.4~553.6 1.0~67.0 −1.1~2.2
    下载: 导出CSV

    表  3  煤矸石图像纹理特征参数的分布范围

    Table  3.   Distribution range of texture feature parameters of coal and gangue images

    样本对比度相关性能量同质性
    5.2~7.10.03~0.140.97~0.990.11~0.300.93~0.98
    矸石3.2~6.20.03~0.250.93~0.990.11~0.360.88~0.98
    下载: 导出CSV

    表  4  煤矸图像颜色特征参数分布

    Table  4.   Distribution of colour features of coal and gangue images

    样本R通道一阶矩G通道一阶矩B通道一阶矩R通道二阶矩G通道二阶矩B通道二阶矩
    12.5~133.972.8~152.63.9~185.923.3~88.632.3~83.19.1~89.2
    矸石39.1~177.20.5~1.938.0~188.713.2~71.90.8~9.113.5~75.2
    下载: 导出CSV

    表  5  部分样本的特征

    Table  5.   Characteristics of selected samples

    样本序号 H2 C2 C1 H1
    煤1 147 59.95 108.14 118.39
    煤2 131 46.28 116.56 122.03
    煤3 195 62.22 108.43 153.84
    煤4 158 58.30 118.04 117.38
    矸石1 9 1.77 1.25 10.89
    矸石2 17 1.47 1.02 23.03
    矸石3 11 1.79 1.23 13.02
    矸石4 27 1.40 0.98 29.97
    下载: 导出CSV
  • [1] 谢和平,王金华,王国法,等. 煤炭革命新理念与煤炭科技发展构想[J]. 煤炭学报,2018,43(5):1187-1197.

    XIE Heping,WANG Jinhua ,WANG Guofa,et al. New ideas of coal revolution and layout of coal science and technology development[J]. Journal of China Coal Society,2018,43(5):1187-1197.
    [2] 陆小泉. 我国煤炭清洁开发利用现状及发展建议[J]. 煤炭工程,2016,48(3):8-10,14.

    LU Xiaoquan. Present situation and suggestion for clean coal development and utilization in China[J]. Coal Engineering,2016,48(3):8-10,14.
    [3] 常允新,朱学顺,宋长斌,等. 煤矸石的危害与防治[J]. 中国地质灾害与防治学报,2001(2):39-43.

    CHANG Yunxin,ZHU Xueshun,SONG Changbin,et al. Hazard of gangue and its control[J]. The Chinese Journal of Geological Hazard and Control,2001(2):39-43.
    [4] 潘荣锟,余明高,徐俊,等. 矸石山的危害及自燃原因关联分析[J]. 安全与环境工程,2006(2):66-69.

    PAN Rongkun,YU Minggao,XU Jun,et al. Harm of gangue dump and cause analysis of spontaneous combustion[J]. Safety and Environmental Engineering,2006(2):66-69.
    [5] SAHU L,DEY S. Enrichment of carbon recovery of high ash coal fines using air fluidized vibratory deck separator[J]. International Journal of Coal Science & Technology,2017,4(3):262-273.
    [6] ZHAO Yuemin,YANG Xuliang,LUO Zhenfu,et al. Progress in developments of dry coal beneficiation[J]. International Journal of Coal Science & Technology,2014,1(1):103-112.
    [7] GUPTA N. Evaluation of pneumatic inclined deck separator for high-ash Indian coals[J]. International Journal of Coal Science & Technology,2016,3(2):198-205.
    [8] 梁金钢,赵环帅,何建新. 国内外选煤技术与装备现状及发展趋势[J]. 选煤技术,2008(1):60-64,76.

    LIANG Jin'gang,ZHAO Huanshuai,HE Jianxin. Current status and development trends of coal preparation technology and equipment both in domestic and overseas[J]. Coal Preparation Technology,2008(1):60-64,76.
    [9] 王家臣,李良晖,杨胜利. 不同照度下煤矸图像灰度及纹理特征提取的实验研究[J]. 煤炭学报,2018,43(11):3051-3061.

    WANG Jiachen,LI Lianghui,YANG Shengli. Experimental study on gray and texture features extraction of coal and gangue image under different illuminance[J]. Journal of China Coal Society,2018,43(11):3051-3061.
    [10] 吴开兴,宋剑. 基于灰度共生矩阵的煤与矸石自动识别研究[J]. 煤炭工程,2016,48(2):98-101.

    WU Kaixing,SONG Jian. Automatic coal-gangue identification based on gray level co-occurrence matrix[J]. Coal Engineering,2016,48(2):98-101.
    [11] 郭永存,何磊,刘普壮,等. 煤矸双能X射线图像多维度分析识别方法[J]. 煤炭学报,2021,46(1):300-309.

    GUO Yongcun,HE Lei,LIU Puzhuang,et al. Multi-dimensional analysis and recognition method of coal and gangue dual-energy X-ray images[J]. Journal of China Coal Society,2021,46(1):300-309.
    [12] 王文鑫,黄杰,王秀宇,等. X射线透射煤矸智能识别方法[J]. 工矿自动化,2022,48(11):27-32,62.

    WANG Wenxin,HUANG Jie,WANG Xiuyu,et al. X-ray transmission intelligent coal-gangue recognition method[J]. Journal of Mine Automation,2022,48(11):27-32,62.
    [13] 张志强,王萍,于旭东,等. 高精度红外热成像测温技术研究[J]. 仪器仪表学报,2020,41(5):10-18.

    ZHANG Zhiqiang,WANG Ping,YU Xudong,et al. Study on high accuracy temperature measurement technology of infrared thermal imager[J]. Chinese Journal of Scientific Instrument,2020,41(5):10-18.
    [14] WANG Shixue,LI Kaixiang,TIAN Yuan,et al. Infrared imaging investigation of temperature fluctuation and spatial distribution for a large laminated lithiumion power battery[J]. Applied Thermal Engineering,2019,152:204-214. doi: 10.1016/j.applthermaleng.2019.02.096
    [15] PAN Dong,JIANG Zhaohui,CHEN Zhipeng,et al. Compensation method for molten iron temperature measurement based on heterogeneous features of infrared thermal images[J]. IEEE Transactions on Industrial Informatics,2020,16(11):7056-7066. doi: 10.1109/TII.2020.2972332
    [16] LI Yiwen,ZHANG Puyousen,CHEN Ge,et al. Study on method for measuring coating emissivity by applying active irradiation based on infrared thermal imager[J]. Sensors,2022,22(6):2392. doi: 10.3390/s22062392
    [17] 孙继平. 基于图像识别的煤岩界面识别方法研究[J]. 煤炭科学技术,2011,39(2):77-79.

    SUN Jiping. Study on identified method of coal and rock interface based on image identification[J]. Coal Science and Technology,2011,39(2):77-79.
    [18] 刘闯. 综放工作面多放煤口协同放煤方法及煤岩识别机理研究[D]. 焦作:河南理工大学,2018.

    LIU Chuang. Research on the method of synergetic multi-windows top coal caving and the mechanism of coal-gangue identification in longwall top coal caving working face[D]. Jiaozuo:Henan Polytechnic University,2018.
    [19] 张强,孙绍安,张坤,等. 基于主动红外激励的煤岩界面识别[J]. 煤炭学报,2020,45(9):3363-3370.

    ZHANG Qiang,SUN Shao'an,ZHANG Kun,et al. Coal and rock interface identification based on active infrared excitation[J]. Journal of China Coal Society,2020,45(9):3363-3370.
    [20] 马娜,张洪潮,周新. 红外热成像技术在煤矿生产中的应用[J]. 煤炭技术,2021,40(2):130-132.

    MA Na,ZHANG Hongchao,ZHOU Xin. Application of infrared thermal imaging technology in coal mine production[J]. Coal Technology,2021,40(2):130-132.
    [21] 张志强,王萍,于旭东,等. 高精度红外热成像测温技术研究[J]. 仪器仪表学报,2020,41(5):10-18.

    ZHANG Zhiqiang,WANG Ping,YU Xudong,et al. Study on high accuracy temperature measurement technology of infrared thermal imager[J]. Chinese Journal of Scientific Instrument,2020,41(5):10-18.
    [22] 沈虎祥. 某污水处理厂提标工程的运行分析及出水水质预测模拟研究[J]. 苏州科技大学学报(工程技术版),2023,36(2):46-54.

    SHEN Huxiang. Operation analysis of upgrading project and simulation study on effluent quality prediction of a sewage treatment plant[J]. Journal of Suzhou University of Science and Technology(Engineering and Technology Edition),2023,36(2):46-54.
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  161
  • HTML全文浏览量:  34
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-27
  • 修回日期:  2024-04-19
  • 网络出版日期:  2024-05-10

目录

    /

    返回文章
    返回