留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤的原位瓦斯放散初速度测定装置及方法研究

薛伟超

薛伟超. 煤的原位瓦斯放散初速度测定装置及方法研究[J]. 工矿自动化,2024,50(4):121-127.  doi: 10.13272/j.issn.1671-251x.2023100059
引用本文: 薛伟超. 煤的原位瓦斯放散初速度测定装置及方法研究[J]. 工矿自动化,2024,50(4):121-127.  doi: 10.13272/j.issn.1671-251x.2023100059
XUE Weichao. Research on the device and method for measuring the initial velocity of in-situ gas emission from coal[J]. Journal of Mine Automation,2024,50(4):121-127.  doi: 10.13272/j.issn.1671-251x.2023100059
Citation: XUE Weichao. Research on the device and method for measuring the initial velocity of in-situ gas emission from coal[J]. Journal of Mine Automation,2024,50(4):121-127.  doi: 10.13272/j.issn.1671-251x.2023100059

煤的原位瓦斯放散初速度测定装置及方法研究

doi: 10.13272/j.issn.1671-251x.2023100059
基金项目: 辽宁省自然科学基金资助项目(2022-MS-463)。
详细信息
    作者简介:

    薛伟超(1988— ),男,河南沁阳人,副研究员,博士研究生,主要从事煤岩动力灾害防治工作,E-mail:xinshijixue@163.com

  • 中图分类号: TD712

Research on the device and method for measuring the initial velocity of in-situ gas emission from coal

  • 摘要: 瓦斯放散初速度是鉴定煤与瓦斯突出危险性的重要指标之一。现有研究未将煤的瓦斯放散初速度指标测试与突出鉴定的其他3个指标(煤层瓦斯压力、煤的破坏类型、煤的坚固性系数)的测试有机结合。现行瓦斯放散初速度测定方法基于AQ 1080—2009《煤的瓦斯放散初速度指标(∆p)测定方法》,测定结果仅反映标准实验条件下瓦斯通过煤粒子向外释放的难易程度,未考虑煤层瓦斯赋存的原位环境,无法准确反映现场煤岩体内部瓦斯向外释放的灾害严重程度。针对上述问题,提出了一种原位瓦斯放散初速度测定装置及方法:采用原始煤块代替煤颗粒,用原始瓦斯成分代替甲烷,增加煤体所处瓦斯压力、应力、温度环境,还原测定的原位环境。对某煤矿煤与瓦斯突出煤层进行原位瓦斯放散初速度测定试验,得出结论:① 随着模拟瓦斯放散过程的进行,瓦斯放散流量逐渐减小,随时间大致呈负指数变化规律。用瓦斯流量表征原位瓦斯放散初速度,则ΔpQA=7.1 mmHg,ΔpQI=2.9 mmHg。② 随着模拟放散过程的进行,放散空间内的瓦斯压力逐渐增大,放散瓦斯压力增大速度逐渐减小,瓦斯压力随时间变化大致呈对数函数关系。用放散瓦斯压力表征原位瓦斯放散初速度,则ΔpPA=25 mmHg,ΔpPI=26.6 mmHg,ΔpPD=11 mmHg。测定结果可综合反映煤层赋存的双重孔隙结构、煤体的力学特性、煤体内瓦斯的赋存能量、煤层赋存的地应力和温度等原位环境,真实反映煤矿井下发生突出危险性程度。

     

  • 图  1  煤的原位瓦斯放散初速度测定装置组成

    1−阀门1;2−阀门2;3−阀门3;4−阀门4;5−流量传感器1;6−流量传感器2;7−流量传感器3;8−流量传感器4;9−储气容器1;10−储气容器2;11−储气容器3;12−储气容器4;13−压力传感器1;14−增压泵;15−气体混合室;16−温度传感器1;17−温度控制器;18−阀门5;19−应力加载机;20−原位煤样或型煤;21−原位环境室;22−阀门6;23−阀门7;24−真空泵;25−管路;26−阀门8;27−放散空间;28−压力传感器2;29−阀门9;30−流量传感器5;31−原位环境模拟模块;32−抽真空模块;33−瓦斯放散模块;34−原位瓦斯气体制备模块;35−压力传感器3;36−放气口;37−阀门10;38−温度传感器2。

    Figure  1.  Composition of the initial velocity measurement device for in-situ gas emission from coal

    图  2  PLC控制模块

    Figure  2.  PLC control module

    图  3  本文方法测定的原位瓦斯放散流量曲线

    Figure  3.  In-situ gas emission flow curve measured by the method in the paper

    图  4  现行方法测定的瓦斯放散流量曲线

    Figure  4.  Gas emission flow curve measured by existing method

    图  5  瓦斯放散量随时间变化曲线

    Figure  5.  Variation curve of gas emission volume with time

    图  6  本文方法测定的原位瓦斯放散压力曲线

    Figure  6.  In-situ gas emission pressure curve meaused by the method in the paper

  • [1] 李成武,雷东记. 静电场对煤放散瓦斯特性影响的实验研究[J]. 煤炭学报,2012,37(6):962-966.

    LI Chengwu,LEI Dongji. Experimental research of the influence of static electric field on the characteristics of coal gas emission[J]. Journal of China Coal Society,2012,37(6):962-966.
    [2] 刘军,王兆丰. 煤变质程度对瓦斯放散初速度的影响[J]. 辽宁工程技术大学学报(自然科学版),2013,32(6):745-748.

    LIU Jun,WANG Zhaofeng. Relation between metamorphic grade and initial velocity of gas diffusion[J]. Journal of Liaoning Technical University(Natural Science),2013,32(6):745-748.
    [3] 陈立. 煤粉化驱动瓦斯放散机理及突出预测方法研究[D]. 北京:北京科技大学,2018.

    CHEN Li. Study on gas desorption mechanism by coal pulverization drived and predication method of outburst[D]. Beijing:University of Science and Technology Beijing,2018.
    [4] 陈刘瑜, 李希建, 沈仲辉, 等. 贵州北部突出煤的孔隙结构及分形特征研究[J]. 中国安全科学学报,2020,30(2):66-72.

    CHEN Liuyu, LI Xijian, SHEN Zhonghui, et al. Pore structure and fractal characteristics of outburst coal in northern Guizhou[J]. China Safety Science Journal,2020,30(2):66-72.
    [5] 杨萌萌,袁梅,徐林,等. 煤的瓦斯放散初速度影响因素实验现状研究[J]. 煤炭技术,2016,35(2):168-170.

    YANG Mengmeng,YUAN Mei,XU Lin,et al. Study of expeimental situation of influence factors on initial speed of methane diffusion[J]. Coal Technology,2016,35(2):168-170.
    [6] 雷红艳. 基于多元线性回归的瓦斯放散初速度影响因素试验研究[J]. 煤矿安全,2022,53(2):9-15.

    LEI Hongyan. Experimental study on influencing factors of initial gas emission velocity based on multiple linear regression[J]. Safety in Coal Mines,2022,53(2):9-15.
    [7] 郭怀广,朱立凯. 深部动力灾害诱发机理及影响因素研究[J]. 煤炭科学技术,2021,49(5):175-181.

    GUO Huaiguang,ZHU Likai. Discussion on mechanism and influencing factors of deep dynamic disaster[J]. Coal Science and Technology,2021,49(5):175-181.
    [8] 曹垚林. 高压吸附下的瓦斯放散初速度研究[J]. 煤矿安全,2004,35(9):4-6.

    CAO Yaolin. Study on initial speed of methane diffusion in the condition of high pressure absorption[J]. Safety in Coal Mines,2004,35(9):4-6.
    [9] 富向,沙慧慧,陈志平,等. 热力−动力复合变质煤的瓦斯放散特征及表征指标研究[J]. 辽宁工程技术大学学报(自然科学版),2023,42(6):641-648.

    FU Xiang,SHA Huihui,CHEN Zhiping,et al. Study on gas dispersion characteristics and characterization indexes of thermodynamic composite metamorphic coal[J]. Journal of Liaoning Technical University(Natural Science),2023,42(6):641-648.
    [10] 周秀红,杨胜强,胡新成,等. 煤与瓦斯突出鉴定的现状及建议[J]. 煤矿安全,2011,42(1):116-118.

    ZHOU Xiuhong,YANG Shengqiang,HU Xincheng,et al. The present situation and advises to the identification of coal and gas outburst[J]. Safety in Coal Mines,2011,42(1):116-118.
    [11] 程波,马代辉,高月. 煤的灰分、挥发分与孔隙率的关联及其对瓦斯放散初速度的影响[J]. 矿业安全与环保,2017,44(1):12-17.

    CHENG Bo,MA Daihui,GAO Yue. Correlation of ash content,volatile matter and porosity of coal and their impact on initial speed of methane diffusion[J]. Mining Safety & Environmental Protection,2017,44(1):12-17.
    [12] 王玉丽. 贵州低渗突出煤层瓦斯解吸及放散初速度试验研究[D]. 贵阳:贵州大学,2018.

    WANG Yuli. Experimental study on gas desorption and initial velocity of gas dispersion in low permeability and outburst coal seam in Guizhou[D]. Guiyang:Guizhou University,2018.
    [13] 林海飞,程博,李树刚,等. 煤的吸附孔结构对瓦斯放散特性影响的实验研究[J]. 采矿与安全工程学报,2016,33(3):557-563.

    LIN Haifei,CHENG Bo,LI Shugang,et al. Experimental study on the effect of adsorption pore structure on gas emission characteristics[J]. Journal of Mining & Safety Engineering,2016,33(3):557-563.
    [14] 王月红,陈庆亚. 煤的微观结构对瓦斯放散特性的影响研究[J]. 华北科技学院学报,2014,11(7):1-5.

    WANG Yuehong,CHEN Qingya. Research on influence of microstructure of coal on the gas radiation characteristics[J]. Journal of North China Institute of Science and Technology,2014,11(7):1-5.
    [15] 张小东,李朋朋,张硕. 不同煤体结构煤的瓦斯放散特征及其影响机理[J]. 煤炭科学技术,2016,44(9):93-98.

    ZHANG Xiaodong,LI Pengpeng,ZHANG Shuo. Gas emission features of coals with different coalbody structure and their influencing mechanism[J]. Coal Science and Technology,2016,44(9):93-98.
    [16] 陈向军,程远平,王林. 水分对不同煤阶煤瓦斯放散初速度的影响[J]. 煤炭科学技术,2012,40(12):62-65.

    CHEN Xiangjun,CHENG Yuanping,WANG Lin. Moisture content affected to initial gas emission velocity of different ranking coal[J]. Coal Science and Technology,2012,40(12):62-65.
    [17] 秦兴林. 水分对不同变质程度煤瓦斯放散初速度的影响研究[J]. 安全与环境学报,2021,21(3):1063-1067.

    QIN Xinglin. Study on the influence of moisture content on initial gas emission velocity of different rank coals[J]. Journal of Safety and Environment,2021,21(3):1063-1067.
    [18] 秦恒洁,魏建平,李栋浩,等. 煤与瓦斯突出过程中地应力作用机理研究[J]. 中国矿业大学学报,2021,50(5):933-942.

    QIN Hengjie,WEI Jianping,LI Donghao,et al. Research on the mechanism of in-situ stress in the process of coal and gas outburst[J]. Journal of China University of Mining & Technology,2021,50(5):933-942.
    [19] SHANG Xianguang,WEI Jianping,WEN Zhihui,et al. Determination of initial velocity of gas diffusion under temperature control[J]. Frontiers in Earth Science,2023. DOI: 10.3389/FEART.2023.1138828.
    [20] 郭志刚. 温度和放散空间体积对等容变压法测定瓦斯放散初速度的影响分析[J]. 能源与环保,2018,40(12):42-44,48.

    GUO Zhigang. Influences of temperature and dissipate space volume on determination of gas initial emission velocity by isobaric variable pressure method[J]. China Energy and Environmental Protection,2018,40(12):42-44,48.
    [21] 薛伟超,李艳增,王春光,等. 一种煤的原位瓦斯放散初速度测定装置及方法:CN115561115A[P]. 2023-01-03.

    XUE Weichao,LI Yanzeng,WANG Chunguang,et al. A measurement device and method of the in-situ gas emission initial velocity of coal:CN115561115A[P]. 2023-01-03.
  • 加载中
图(6)
计量
  • 文章访问数:  76
  • HTML全文浏览量:  60
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-19
  • 修回日期:  2024-04-19
  • 网络出版日期:  2024-05-10

目录

    /

    返回文章
    返回