留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于矿井通风网络解算的通风机风压性能曲线自动识别方法

吴奉亮 寇露

吴奉亮,寇露. 用于矿井通风网络解算的通风机风压性能曲线自动识别方法[J]. 工矿自动化,2024,50(4):103-111.  doi: 10.13272/j.issn.1671-251x.2023100036
引用本文: 吴奉亮,寇露. 用于矿井通风网络解算的通风机风压性能曲线自动识别方法[J]. 工矿自动化,2024,50(4):103-111.  doi: 10.13272/j.issn.1671-251x.2023100036
WU Fengliang, KOU Lu. Automatic recognition method of ventilator wind pressure performance curve for mine ventilation network calculation[J]. Journal of Mine Automation,2024,50(4):103-111.  doi: 10.13272/j.issn.1671-251x.2023100036
Citation: WU Fengliang, KOU Lu. Automatic recognition method of ventilator wind pressure performance curve for mine ventilation network calculation[J]. Journal of Mine Automation,2024,50(4):103-111.  doi: 10.13272/j.issn.1671-251x.2023100036

用于矿井通风网络解算的通风机风压性能曲线自动识别方法

doi: 10.13272/j.issn.1671-251x.2023100036
基金项目: 国家自然科学基金资助项目(51974232)。
详细信息
    作者简介:

    吴奉亮(1977—),男,四川新都人,教授,博士,主要研究方向为矿井通风与安全,E-mail:15038537@qq.com

  • 中图分类号: TD724

Automatic recognition method of ventilator wind pressure performance curve for mine ventilation network calculation

  • 摘要: 从通风机性能曲线图像中采样并识别风压性能曲线,进而拟合出风压性能函数是矿井通风网络解算的关键技术。目前常用人工方式识别风压性能曲线,效率低且准确性不高。提出一种基于图像处理技术的通风机风压性能曲线自动识别方法。采用双边滤波、图像锐化和二值化技术对原始通风机风压性能曲线图像进行预处理,以提高图像质量。分别基于腐蚀算法、轮廓检测算法提取通风机性能曲线图像中的网格线和坐标文字,采用逻辑运算、中值滤波、轮廓检测和K3M算法提取风压性能曲线。以逐行像素识别方式识别风压性能曲线的像素坐标,采用模板匹配算法识别坐标数字,进而完成像素坐标到物理坐标的转换,实现风压性能曲线识别。将通风机风压性能曲线自动识别方法集成至通风网络解算软件,对通风机风压性能曲线进行识别试验,结果表明,该方法对单条风压性能曲线的采样速度为24 Samples/s,识别的风压性能曲线与原始曲线的重合度高,风压拟合值与原始值的最大误差仅为0.88%,较人工识别方法大大提高了通风网络解算效率和准确性。

     

  • 图  1  矿井通风机性能曲线图像

    Figure  1.  Performance curve image of mine ventilator

    图  2  简化矿井通风网络

    Figure  2.  Simplified mine ventilation network

    图  3  不同滤波效果对比

    Figure  3.  Comparison of different filtering effects

    图  4  通风机性能曲线图像预处理结果

    Figure  4.  Preprocessed result of ventilator performance curve image

    图  5  通风机性能曲线图像分割

    Figure  5.  Segmentation of ventilator performance curve image

    图  6  网格线提取过程

    Figure  6.  Process of extracting grid lines

    图  7  坐标数字提取过程

    Figure  7.  Process of extracting coordinate numbers

    图  8  曲线提取过程

    Figure  8.  Process of extracting curves

    图  9  图像细化结果

    Figure  9.  Image after skeletonization

    图  10  像素坐标系中识别出的曲线段

    Figure  10.  Curve segments recognized in pixel coordinate system

    图  11  模板图像

    Figure  11.  Template image

    图  12  待匹配数字8图像

    Figure  12.  The image of the number 8 to be matched

    图  13  程序界面

    Figure  13.  User interface

    图  14  通风机风压性能曲线识别结果

    Figure  14.  Recognition results of ventilator wind-pressure performance curve

    图  15  通风网络解算工况点对比

    Figure  15.  Comparison of operating points in ventilation network solution

    表  1  通风机风压性能曲线识别使用的OpenCV库函数

    Table  1.   The OpenCV functions used in recognizing ventilator wind-pressure performance curve

    函数名称 作用 函数名称 作用
    cvtColor() 颜色模型转换 erode() 图像腐蚀
    threshold() 图像二值化 dilate() 图像膨胀
    resize() 图像尺寸调整 findContours() 轮廓检测
    rectangle() 矩形绘制 drawContours() 轮廓绘制
    mediaBlur() 中值滤波 contourArea() 轮廓面积计算
    bilateralFilter() 双边滤波 matchTemplate() 图像模板匹配
    bitwise_or() 逻辑“或”运算 boundingRect() 轮廓外接矩形
    bitwise_xor() 逻辑“异或”运算 getStructuringElement() 结构元素生成
    下载: 导出CSV

    表  2  风压性能曲线拟合函数

    Table  2.   The fitting function for wind-pressure performance curve

    叶片
    角/(°)
    拟合函数
    人工识别 自动识别
    33/30 4666.9−33.29365Q+
    0.47619Q2−0.0037Q3
    7500.8−125.3284Q+
    1.43854Q2−0.007Q3
    36/33 −1131.7+134.32482Q−
    1.0688Q2+0.00161Q3
    2693.3+30.13515Q−
    0.14524Q2−0.0011Q3
    39/36 1304.9+63.9791Q−
    0.39354Q2−0.00013Q3
    −1120.4+123.62072Q−
    0.85917Q2+0.00102Q3
    42/39 9744.5−108.19048Q+
    0.75681Q2−0.00235Q3
    11328.1−139.91739Q+
    0.96312Q2−0.0028Q3
    45/42 −3181.9+156.33247Q−
    0.98338Q2+0.00151Q3
    5439.6−7.95758Q+
    0.03772Q2−0.00057Q3
    下载: 导出CSV

    表  3  人工识别与自动识别曲线上工况点对比

    Table  3.   Comparison between manual and automatic recognition of operating points on curves

    叶片角/(°) 风量/
    (m3·s−1
    风压/Pa 风压识别误差/%
    原图像 人工识别 自动识别 人工识别 自动识别
    33/30753 2303 287.53 239.81.780.30
    852 9003 005.22 942.52.920.77
    36/331003 1503 005.23 154.42.310.14
    140650782.0655.78.870.27
    39/361053 6003 533.43 579.81.850.88
    1551 2401 282.81 234.86.900.20
    42/391552 3502 294.52 353.02.390.13
    1801 0201 085.01 018.56.440.15
    45/421602 8002 841.72 797.01.490.10
    200800829.3796.73.670.41
    下载: 导出CSV
  • [1] 李伟宏,魏志丹. 矿井智能通风控制系统研究及应用[J]. 工矿自动化,2021,47(增刊1):72-74,84.

    LI Weihong,WEI Zhidan. Research of mine intelligent ventilation control system and its application[J]. Industry and Mine Automation,2021,47(S1):72-74,84.
    [2] 王凯,裴晓东,杨涛,等. 矿井智能通风联动调控理论与供需匹配实验研究[J]. 工程科学学报,2023,45(7):1214-1224.

    WANG Kai,PEI Xiaodong,YANG Tao,et al. Study on intelligent ventilation linkage control theory and supply-demand matching experiment in mines[J]. Chinese Journal of Engineering,2023,45(7):1214-1224.
    [3] 任子晖,李昂,吴新忠,等. 矿井通风网络风量智能调控研究[J]. 工矿自动化,2022,48(11):110-118.

    REN Zihui,LI Ang,WU Xinzhong,et al. Research on intelligent control of air volume of mine ventilation network[J]. Journal of Mine Automation,2022,48(11):110-118.
    [4] 范京道,李川,闫振国. 融合5G技术生态的智能煤矿总体架构及核心场景[J]. 煤炭学报,2020,45(6):1949-1958.

    FAN Jingdao,LI Chuan,YAN Zhenguo. Overall architecture and core scenario of a smart coal mine in-corporating 5G technology ecology[J]. Journal of China Coal Society,2020,45(6):1949-1958.
    [5] 谈国文. 复杂矿井通风网络可视化动态解算及预警技术[J]. 工矿自动化,2020,46(2):6-11.

    TAN Guowen. Visualized dynamic solution and early warning technology for ventilation network of complex mine[J]. Industry and Mine Automation,2020,46(2):6-11.
    [6] 周福宝,辛海会,魏连江,等. 矿井智能通风理论与技术研究进展[J]. 煤炭科学技术,2023,51(1):313-328.

    ZHOU Fubao,XIN Haihui,WEI Lianjiang,et al. Research progress of mine intelligent ventilation theory and technology[J]. Coal Science and Technology,2023,51(1):313-328.
    [7] 张浪,刘彦青. 矿井智能通风与关键技术研究[J]. 煤炭科学技术,2024,52(1):178-195.

    ZHANG Lang,LIU Yanqing. Research on technology of key steps of intelligent ventilation in mines[J]. Coal Science and Technology,2024,52(1):178-195.
    [8] 刘剑. 矿井智能通风关键科学技术问题综述[J]. 煤矿安全,2020,51(10):108-111,117.

    LIU Jian. Overview on key scientific and technical issues of mine intelligent ventilation[J]. Safety in Coal Mines,2020,51(10):108-111,117.
    [9] 魏连江,周福宝,夏同强,等. 矿井智能通风与灾变应急决策平台[J]. 中国安全科学学报,2022,32(9):158-167.

    WEI Lianjiang,ZHOU Fubao,XIA Tongqiang,et al. Mine intelligent ventilation and disaster emergency decision platform[J]. China Safety Science Journal,2022,32(9):158-167.
    [10] 唐辉雄,赵伏军,张柏,等. 基于最小一乘准则求解矿井通风机性能曲线[J]. 中国安全生产科学技术,2014,10(10):16-21.

    TANG Huixiong,ZHAO Fujun,ZHANG Bai,et al. Solution on performance curves of mine ventilator based on least absolute deviation criteria[J]. Journal of Safety Science and Technology,2014,10(10):16-21.
    [11] 尹昌胜,刘剑,邓立军. 正反相切抛物线方法拟合通风机特性曲线[J]. 辽宁工程技术大学学报(自然科学版),2015,34(1):77-81.

    YIN Changsheng,LIU Jian,DENG Lijun. Characteristic curve of fan fitted with two positive and negative tangent parabolic curve method[J]. Journal of Liaoning Technical University(Natural Science),2015,34(1):77-81.
    [12] 叶敏,杨应迪. 轴流式风机特性曲线的图形数字化及优化研究[J]. 煤炭工程,2013,45(增刊1):110-111,115.

    YE Min,YANG Yingdi. The digitalization and optimization study of characteristic curves for axial flow fans[J]. Coal Engineering,2013,45(S1):110-111,115.
    [13] 贾腾, 王海桥, 陈世强, 等. 矿用通风机性能曲线图的函数化再现[J]. 矿业工程研究,2014,29(2):70-74.

    JIA Teng, WANG Haiqiao, CHEN Shiqiang, et al. A functional representation of the mine ventilator's performance chart[J]. Mineral Engineering Research,2014,29(2):70-74.
    [14] 吴奉亮. 矿井主要通风机性能曲线的最优多项式拟合[J]. 西安科技大学学报,2011,31(1):14-18.

    WU Fengliang. Optimal polynomial fitting for mine main fan characteristic curves[J]. Journal of Xi'an University of Science and Technology,2011,31(1):14-18.
    [15] RONGDI L. An optimal algorithm for bilateral filtering[J]. Journal of Physics: Conference Series,2023,2634(1). DOI: 10.1088/1742-6596/2634/1/012030.
    [16] CAPOBIANCO G, CERRONE C, PLACIDO D A, et al. Image convolution: a linear programming approach for filters design[J]. Soft Computing,2021,25(14):1-16.
    [17] ZHANG Weiguo,SHI Dan,YANG Xiaoqiang. An improved edge detection algorithm based on mathematical morphology and directional wavelet transform[C]. The 8th International Congress on Image and Signal Processing,Shenyang,2015:335-339.
    [18] LIU Hongquan,ZHANG Weijin,WANG Fushun,et al. Application of an improved watershed algorithm based on distance map reconstruction in bean image segmentation[J]. Heliyon,2023,9(4). DOI:10.1016/J.HELIYON.2023.E15097.
    [19] TABEDZKI M,SAEED K,SZCZEPAńSKI A. A modified K3M thinning algorithm[J]. International Journal of Applied Mathematics and Computer Science,2016,26(2):439-450. doi: 10.1515/amcs-2016-0031
    [20] CUI Zhongjie,QI Wenfa,LIU Yuxin. A fast image template matching algorithm based on normalized cross correlation[J]. Journal of Physics:Conference Series,2020,1693 (1). DOI: 10.1088/1742-6596/1693/1/012163.
    [21] 吴奉亮,周澎,李晖,等. 基于智能对象的矿井通风CAD模型研究[J]. 煤炭科学技术,2009,37(5):54-57.

    WU Fengliang,ZHOU Peng,LI Hui,et al. Research on mine ventilation CAD model based on intelligent object[J]. Coal Science and Technology,2009,37(5):54-57.
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  93
  • HTML全文浏览量:  31
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-12
  • 修回日期:  2024-03-15
  • 网络出版日期:  2024-05-10

目录

    /

    返回文章
    返回