留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤矿场景下单相级联H桥整流器解耦控制方法研究

刘诗源

刘诗源. 煤矿场景下单相级联H桥整流器解耦控制方法研究[J]. 工矿自动化,2024,50(4):159-168.  doi: 10.13272/j.issn.1671-251x.2023090089
引用本文: 刘诗源. 煤矿场景下单相级联H桥整流器解耦控制方法研究[J]. 工矿自动化,2024,50(4):159-168.  doi: 10.13272/j.issn.1671-251x.2023090089
LIU Shiyuan. Research on decoupling control method for single-phase cascade H-bridge rectifier in coal mine scenarios[J]. Journal of Mine Automation,2024,50(4):159-168.  doi: 10.13272/j.issn.1671-251x.2023090089
Citation: LIU Shiyuan. Research on decoupling control method for single-phase cascade H-bridge rectifier in coal mine scenarios[J]. Journal of Mine Automation,2024,50(4):159-168.  doi: 10.13272/j.issn.1671-251x.2023090089

煤矿场景下单相级联H桥整流器解耦控制方法研究

doi: 10.13272/j.issn.1671-251x.2023090089
基金项目: 北京市教育委员会科学研究计划项目(KM202211417006);北京联合大学科研项目(ZK90202105)。
详细信息
    作者简介:

    刘诗源(1990—),女,吉林松原人,讲师,博士,研究方向为计算机应用技术,E-mail:yktshiyuan@163.com

  • 中图分类号: TD611

Research on decoupling control method for single-phase cascade H-bridge rectifier in coal mine scenarios

  • 摘要: 针对单相级联H桥整流器的电力电子设备在煤矿场景下运行过程中直流侧存在二次电压纹波,导致网侧电流畸变、电容值漂移等问题,通过分析单相级联H桥整流器直流侧二次电压纹波的形成原因,提出了一种基于分裂电容不相等的独立型解耦拓扑的优化控制方法。该方法通过在电容两端叠加二倍工频的电压来抵消二次电压纹波,实现了直流侧二次电压纹波的有效抑制。针对3种基于构造二次电压的解耦方式(直流分裂电容值不等,直流电压分量相等;直流分裂电容值不等,且直流电压分量也不等;直流分裂电容值相等,直流电压分量不等)进行了参数设计和控制策略的研究,并通过分析参数对二次电压幅值的影响,确定了最优的参数取值范围,以实现有效的功率解耦,并减小电容值,降低设备体积和成本。仿真结果表明:① 在0.2 s时加入分裂电容的独立型解耦拓扑(SC−IAPD)电路,基于解耦方式2的SC−IAPD电路控制方法、基于解耦方式2的SC−IAPD电路的优化控制方法、基于解耦方式1的 SC−IAPD电路控制方法的直流侧输出电压纹波都控制在1~1.5 V,说明对称半桥解耦电路可有效抑制直流电压波动,同时在负荷变化时具有良好的解耦性能。② 在轻载切重载的情况下,基于解耦方式2的SC−IAPD电路的优化控制方法能快速跟随负载变化,实现纹波的抑制,具有更强的带载能力和更佳的解耦效果。而在重载切轻载的情况下,基于解耦方式1的 SC−IAPD电路控制方法能够更好地实现解耦性能,将电压纹波控制在1 V以内。如果考虑电容值的最小化,基于解耦方式2的SC−IAPD电路的控制方法则更具优势。实验结果表明:① 负载突变前,传统控制方法和基于二次电压的解耦控制方法都能有效抑制直流侧的电压纹波,但基于二次电压的解耦控制方法在抑制电压纹波方面效果更佳,使直流侧的电压纹波更小。② 负载突变后,传统控制方法无法维持直流侧电压的稳定性,出现较大的震荡,失去稳定性。

     

  • 图  1  基于SC−IAPD的矿用SCHBR主电路拓扑

    Figure  1.  Main circuit topology of mine single-phase cascaded H bridge rectifier(SCHBR) based on split capacitor IAPD (SC-IAPD)

    图  2  二次电压幅值Uc与不匹配系数m之间的关系

    Figure  2.  Relationship between the double frequency voltage amplitude Uc and the mismatch coefficient m

    图  3  二次电压幅值Uc与直流偏置系数n之间的关系

    Figure  3.  Relationship between the double frequency voltage amplitude Uc and the DC bias coefficient n

    图  4  直流偏置系数最大值nmax、最小值nmin与不匹配系数m之间的关系

    Figure  4.  Relationship between the maximum value nmax of DC bias coefficient, the minimum value nmin and the mismatch coefficient m

    图  5  2个分裂电容最大值Uc1.maxUc2.max与不匹配系数m之间的关系

    Figure  5.  Relationship between the maximum value Uc1.maxUc2.max of two split capacitances and the mismatch coefficient m

    图  6  SC−IAPD电路控制方法原理

    Figure  6.  Principle of the SC-IAPD circuit control method

    图  7  SC−IAPD电路的优化控制方法原理

    Figure  7.  Principle of the optimized SC-IAPD circuit control method

    图  8  Uc1.maxUc2.minm之间的关系

    Figure  8.  Relationship between Uc1.max, Uc2.min and the mismatch coefficient m

    图  9  基于解耦方式1时,二次电压幅值Uc与不匹配系数m之间的关系

    Figure  9.  Relationship between the double frequency voltage amplitude Uc and the mismatch coefficient m based on decoupling model 1

    图  10  基于解耦方式1的 SC−IAPD电路控制方法原理

    Figure  10.  Principle of the SC-IAPD circuit control method based on decoupling mode 1

    图  11  改变负载时方法1控制下的基于SC−IAPD的SCHBR仿真波形

    Figure  11.  SCHBR simulation waveform based on SC-IAPD under the method 1 control when changing load

    图  12  改变负载时方法2控制下的基于SC−IAPD的SCHBR仿真波形

    Figure  12.  SCHBR simulation wavefor based on SC-IAPD under the method 2 control when changing load

    图  13  改变负载时方法3控制下的基于SC−IAPD的SCHBR仿真波形

    Figure  13.  SCHBR simulation waveform based on SC-IAPD under the method 3 control when changing load

    图  14  传统控制与本文控制方法下的直流输出电压实验波形

    Figure  14.  Experimental waveform of DC output voltage under traditional control and the control method in the paper

    图  15  传统控制与本文控制方法下的分裂电容电压实验波形

    Figure  15.  Experimental waveform of split capacitance voltage under traditional control and the control methods in the paper

    表  1  基于SC−IAPD的SCHBR参数

    Table  1.   Parameters of SCHBR based on SC-IAPD

    参数 参数
    H桥开关频率/kHz 10 装置容量/kW 10
    电网频率/Hz 50 级联单元数/个 2
    电网电压幅值/V 155 直流侧电容/mF 1.5
    并网电感/mH 0.8 直流侧输出电压/V 130
    解耦电感/mH 4 分裂电容/mF C1=0.75,C2=0.3
    下载: 导出CSV
  • [1] 张传金,李雨潭,刘战,等. 矿用LCL型三电平静止无功发生器控制策略[J]. 工矿自动化,2020,46(5):87-93.

    ZHANG Chuanjin,LI Yutan,LIU Zhan,et al. Control strategy of mine-used LCL three-level static var generator[J]. Industry and Mine Automation,2020,46(5):87-93.
    [2] 田旭,马越. 矿井链式静止同步补偿器电流跟踪控制策略[J]. 工矿自动化,2019,45(4):49-53,82.

    TIAN Xu,MA Yue. Current tracking control strategy for mine chain STATCOM[J]. Industry and Mine Automation,2019,45(4):49-53,82.
    [3] 王国法,王虹,任怀伟,等. 智慧煤矿2025情景目标和发展路径[J]. 煤炭学报,2018,43(2):295-305.

    WANG Guofa,WANG Hong,REN Huaiwei,et al. 2025 scenarios and development path of intelligent coal mine[J]. Journal of China Coal Society,2018,43(2):295-305.
    [4] 李悦. 九部门联合印发“十四五”可再生能源发展规划[N]. 中国气象报,2022-06-08(第1版).

    LI Yue. Nine departments jointly issued the 14th Five-Year Plan for renewable energy development[N]. China Meteorological News,2022-06-08(1th ed).
    [5] 梅家棋,赵一潇,程晋培,等. 混合级联桥式整流电路与级联多电平整流电路应用研究[J]. 煤炭工程,2021,53(12):125-130.

    MEI Jiaqi,ZHAO Yixiao,CHENG Jinpei,et al. Application of hybrid cascade bridge rectifier circuit and cascade multilevel rectifier circuit[J]. Coal Engineering,2021,53(12):125-130.
    [6] 李定甲,苏玉香,刘安国,等. 矿用级联多电平变换器输出谐波特性研究[J]. 煤矿机械,2023,44(10):37-39.

    LI Dingjia,SU Yuxiang,LIU Anguo,et al. Research on output harmonic characteristics of mining cascade multilevel converter[J]. Coal Mine Machinery,2023,44(10):37-39.
    [7] 李定甲,苏玉香,刘安国,等. 级联多电平有源电力滤波器在煤矿电网谐波补偿中的应用研究[J]. 煤矿机械,2023,44(8):154-156.

    LI Dingjia,SU Yuxiang,LIU Anguo,et al. Research on application of cascaded multi-level active power filter on harmonic compensation of coal mine power grid[J]. Coal Mine Machinery,2023,44(8):154-156.
    [8] 陶海军,肖群星,张金生,等. 单相级联型多电平变换器直流纹波电压分析及抑制策略[J]. 河南理工大学学报(自然科学版),2024,43(1):113-123.

    TAO Haijun,XIAO Qunxing,ZHANG Jinsheng,et al. Analysis and suppression strategy of DC ripple voltage of single-phase cascaded multilevel converter[J]. Journal of Henan Polytechnic University(Natural Science),2024,43(1):113-123.
    [9] 贺虎成,谭阜琛,司堂堂,等. 基于SVG的采煤机电能质量控制策略研究[J]. 煤炭工程,2022,54(8):129-135.

    HE Hucheng,TAN Fuchen,SI Tangtang,et al. Control strategy of electric power quality governance of coal shearer based on SVG[J]. Coal Engineering,2022,54(8):129-135.
    [10] 叶满园,康力璇. 单相级联H桥光伏并网逆变器功率平衡控制策略研究[J]. 电源学报,2020,18(4):137-143.

    YE Manyuan,KANG Lixuan. Research on power balance control strategy for single-phase cascaded H-bridge photovoltaic grid-connected inverter[J]. Journal of Power Supply,2020,18(4):137-143.
    [11] SAJADI R,IMAN-EINI H,BAKHSHIZADEH M K,et al. Selective harmonic elimination technique with control of capacitive DC link voltages in an asymmetric cascaded H-bridge inverter for STATCOM application[J]. IEEE Transactions on Industrial Electronics,2018,65(11):8788-8796. doi: 10.1109/TIE.2018.2811365
    [12] WANG Yingjie,LIU Feilong,CHEN Shuai,et al. Prediction errors analysis and correction on FCS-MPC for the cascaded H-bridge multilevel inverter[J]. IEEE Transactions on Industrial Electronics,2022,69(8):8264-8273. doi: 10.1109/TIE.2021.3104594
    [13] ZHAO Xiangkun,XU Gaoxiang,WANG Li,et al. A novel clustered voltage balance for cascaded H-bridge STATCOM with CCS-MPC[C]. IEEE 4th International Electrical and Energy Conference,Wuhan,2021:1-6.
    [14] YE Manyuan,KANG Lixuan,XIAO Yunhuang,et al. Modified hybrid modulation strategy with power balance control for H-bridge hybrid cascaded seven-level inverter[J]. IET Power Electronics,2018,11(6):1046-1054. doi: 10.1049/iet-pel.2017.0558
    [15] YE Zongbin,WANG Tingting,MAO Shiqi,et al. A PWM strategy based on state transition for cascaded H-bridge inverter under unbalanced DC sources[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics,2020,8(2):1686-1700. doi: 10.1109/JESTPE.2019.2893936
    [16] YE Zongbin,ZHENG Qisheng,PEI Hanjun,et al. New inter and inner phase power control method for cascaded H-bridge based on simplified PWM strategy[J]. IEEE Transactions on Power Electronics,2020,35(8):8607-8623. doi: 10.1109/TPEL.2019.2961945
    [17] IHOR O,LARYSA A,SERHII B. Research of closed loop control systems of the electric drive of mine electric locomotive with the DC series motor and nonlinear load[C]. IEEE International Conference on Modern Electrical and Energy Systems,Kremenchuk,2021: 1-6.
    [18] BAO Jusheng,YANG Shuai,GE Shirong,et al. Design and experiments on a hybrid electric drive system for underground coal mine locomotives[C]. IEEE International Conference on Mechatronics,Robotics and Automation,Hefei,2018:117-121.
    [19] GAUTAM A R,FULWANI D M,MAKINENI R R,et al. Control strategies and power decoupling topologies to mitigate 2ω-ripple in single-phase inverters:a review and open challenges[J]. IEEE Access,2020,8:147533-147559. doi: 10.1109/ACCESS.2020.3015315
    [20] 袁义生,毛凯翔. 基于负载电流前馈的级联SCHBR直流电压平衡策略[J]. 电力自动化设备,2019,39(6):33-38,53.

    YUAN Yisheng,MAO Kaixiang. DC voltage balance strategy for cascaded H-bridge rectifier based on load current feedforward[J]. Electric Power Automation Equipment,2019,39(6):33-38,53.
    [21] WATANABE H,SAKURABA T,FURUKAWA K,et al. Development of DC to single-phase AC voltage source inverter with active power decoupling based on flying capacitor DC/DC converter[J]. IEEE Transactions on Power Electronics,2018,33(6):4992-5004. doi: 10.1109/TPEL.2017.2727063
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  62
  • HTML全文浏览量:  36
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-29
  • 修回日期:  2024-03-25
  • 网络出版日期:  2024-05-10

目录

    /

    返回文章
    返回