留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进YOLOv5s的煤矿机电设备维修指导系统

徐俊 赵小虎 候念琦 王杰 刘昱麟

徐俊,赵小虎,候念琦,等. 基于改进YOLOv5s的煤矿机电设备维修指导系统[J]. 工矿自动化,2024,50(5):151-156.  doi: 10.13272/j.issn.1671-251x.2023090069
引用本文: 徐俊,赵小虎,候念琦,等. 基于改进YOLOv5s的煤矿机电设备维修指导系统[J]. 工矿自动化,2024,50(5):151-156.  doi: 10.13272/j.issn.1671-251x.2023090069
XU Jun, ZHAO Xiaohu, HOU Nianqi, et al. A maintenance guidance system for coal mine electromechanical equipment based on improved YOLOv5s[J]. Journal of Mine Automation,2024,50(5):151-156.  doi: 10.13272/j.issn.1671-251x.2023090069
Citation: XU Jun, ZHAO Xiaohu, HOU Nianqi, et al. A maintenance guidance system for coal mine electromechanical equipment based on improved YOLOv5s[J]. Journal of Mine Automation,2024,50(5):151-156.  doi: 10.13272/j.issn.1671-251x.2023090069

基于改进YOLOv5s的煤矿机电设备维修指导系统

doi: 10.13272/j.issn.1671-251x.2023090069
基金项目: 山东省自然科学基金项目(ZR2021MF026)。
详细信息
    作者简介:

    徐俊(1982—),男,江苏徐州人,工程师,博士研究生,研究方向为数字孪生、混合现实技术,E-mail:lanyu@xzit.edu.cn

  • 中图分类号: TD67

A maintenance guidance system for coal mine electromechanical equipment based on improved YOLOv5s

  • 摘要: 针对煤矿机电设备辅助维修中二维码标注工作量大、通用性低及现有免注册识别方法实现复杂、难以部署等问题,提出了一种基于改进YOLOv5s的煤矿机电设备维修指导系统。该系统由设备免注册识别模块、故障维修指导模块、远程专家接入指导模块组成。设备免注册识别模块通过HoloLens眼镜上的摄像头采集故障设备图像,并通过改进YOLOv5s图像识别算法进行分析和处理,识别出故障设备型号;故障维修指导模块根据故障设备型号自动匹配调用预设好的混合现实拆装模型,形成维修指导解决方案;远程专家接入指导模块通过音视频会话、虚拟标注等方式实现远程专家与现场维修人员的交互。为保证用户使用混合现实设备时的沉浸感体验,针对混合现实设备自身算力不足问题,采用ShuffleNetV2替换YOLOv5s中的Backbone,得到YOLOv5s−SN2网络,从而减少模型参数量,降低计算开销。实验结果表明:YOLOv5s−SN2相较于YOLOv5s精度略有下降,但每秒浮点运算次数(FLOPS)从16.5×109下降到7.6×109,参数量从15.6×106个下降到8.2×106个;在YOLO系列模型中,YOLOv5s−SN2性能最优。以三叶罗茨鼓风机为例验证系统整体效果,结果表明,YOLOv5s−SN2可快速识别出电动机型号,调用与之匹配的虚拟模型及维修流程,远程专家可通过音视频接入和标注等方法辅助现场工作人员进行机电设备维修。

     

  • 图  1  基于改进YOLOv5s的煤矿机电设备维修指导系统总体框架

    Figure  1.  Overall framework of maintenance guidance system for coal mine electromechanical equipment based on improved YOLOv5s

    图  2  YOLOv5s−SN2网络结构

    Figure  2.  YOLOv5s-SN2 network architecture

    图  3  远程专家接入指导模块结构

    Figure  3.  Structure of remote expert access guidance module

    图  4  系统整体应用效果

    Figure  4.  Overall application effect of the system

    表  1  轻量化模型对比

    Table  1.   Comparison of lightweight models

    模型mAPFLOPS/109参数量/106
    YOLOv5s0.91016.515.6
    YOLOv5s−MN30.8796.57.4
    YOLOv5s−SN20.9047.68.2
    下载: 导出CSV

    表  2  不同YOLO模型对比

    Table  2.   Comparison of different YOLO models

    模型PRmAPFLOPS/109参数量/106
    YOLOv5s0.9100.8560.89316.515.6
    YOLOv5m0.9540.9120.93449.640.6
    YOLOv60.9080.7500.90538.537.5
    YOLOv70.8930.8320.90676.274.6
    YOLOv5s−SN20.9040.8730.8847.68.2
    下载: 导出CSV
  • [1] 孙艺凌. 基于数字孪生与混合现实技术的机电设备辅助维修方法研究[J]. 中国新技术新产品,2024(2):36-38.

    SUN Yiling. Research on auxiliary maintenance methods for mechanical and electrical equipment based on digital twin and hybrid reality technology[J]. New Technologies and New Products of China,2024(2):36-38.
    [2] 李喆,陈佳宁,张林鍹. 核电站设备维修中混合现实技术的应用研究[J]. 计算机仿真,2018,35(5):340-345.

    LI Zhe,CHEN Jianing,ZHANG Linxuan. Application of mixed reality technology in maintenance of nuclear power stations[J]. Computer Simulation,2018,35(5):340-345.
    [3] WOLFARTSBERGER J,ZENISEK J,WILD N. Data-driven maintenance:combining predictive maintenance and mixed reality-supported remote assistance[C]. 10th Conference on Learning Factories,Graz,2020:307-312.
    [4] 张旭辉,张雨萌,王妙云,等. 基于混合现实的矿用设备维修指导系统[J]. 工矿自动化,2019,45(6):27-31.

    ZHANG Xuhui,ZHANG Yumeng,WANG Miaoyun,et al. Maintenance guidance system of mine-used equipments based on mixed reality[J]. Industry and Mine Automation,2019,45(6):27-31.
    [5] 朱金达,赵永衡. 基于混合现实的自行火炮维修指导系统[J]. 兵器装备工程学报,2023,44(4):45-52. doi: 10.11809/bqzbgcxb2023.04.008

    ZHU Jinda,ZHAO Yongheng. Mixed reality-based self-propelled artillery repair guidance system[J]. Journal of Ordnance Equipment Engineering,2023,44(4):45-52. doi: 10.11809/bqzbgcxb2023.04.008
    [6] 张旭辉,张雨萌,王岩,等. 融合数字孪生与混合现实技术的机电设备辅助维修方法[J]. 计算机集成制造系统,2021,27(8):2187-2195.

    ZHANG Xuhui,ZHANG Yumeng,WANG Yan,et al. Auxiliary maintenance method for electromechanical equipment integrating digital twin and mixed reality technology[J]. Computer Integrated Manufacturing Systems,2021,27(8):2187-2195.
    [7] 王崴,洪学峰,雷松贵. 基于MR的机电装备智能检测维修[J]. 图学学报,2022,43(1):141-148.

    WANG Wei,HONG Xuefeng,LEI Songgui. Intelligent inspection and maintenance of mechanical and electrical equipment based on MR[J]. Journal of Graphics,2022,43(1):141-148.
    [8] REDMON J,DIVVALA S,GIRSHICK R,et al. You only look once:unified,real-time object detection[C]. IEEE Conference on Computer Vision and Pattern Recognition,Las Vegas,2016:779-788.
    [9] REDMON J,FARHADI A. YOLO9000:better,faster,stronger[C]. IEEE Conference on Computer Vision and Pattern Recognition,Honolulu,2017:7263-7271.
    [10] REDMON J,FARHADI A. YOLOv3:an incremental improvement[EB/OL]. [2024-03-05]. https://arxiv.org/abs/1804.02767.
    [11] LIU Wei,ANGUELOV D,ERHAN D,et al. SSD:single shot multiBox detector[C]. The 14th European Conference on Computer Vision,Amsterdam,2016:21-37.
    [12] BOCHKOVSKIY A,WANG C Y,LIAO H. YOLOv4:optimal speed and accuracy of object detection[EB/OL]. [2024-03-05]. https://arxiv.org/abs/2004.10934.
    [13] CHEN H-Y,SU C-Y. An enhanced hybrid MobileNet[C]. The 9th International Conference on Awareness Science and Technology,Fukuoka,2018:308-312.
    [14] HOWARD A,SANDLER M,CHEN Bo,et al. Searching for MobileNetV3[C]. IEEE/CVF International Conference on Computer Vision,Seoul,2019:1314-1324.
    [15] HOWARD A G,ZHU Menglong,CHEN Bo,et al. Mobilenets:efficient convolutional neural networks for mobile vision applications[EB/OL]. [2024-03-05]. https://arxiv.org/abs/1704.04861.
    [16] SANDLER M,HOWARD A,ZHU Menglong,et al. MobileNetV2:inverted residuals and linear bottlenecks[EB/OL]. [2024-03-05]. http://arxiv.org/pdf/1801.04381.pdf.
    [17] HAN Kai,WANG Yunhe,TIAN Qi,et al. Ghostnet:more features from cheap operations[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Seattle,2020:1580-1589.
    [18] ZHANG Xiangyu,ZHOU Xinyu,LIN Mengxiao,et al. ShuffleNet:an extremely efficient convolutional neural network for mobile devices[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Salt Lake City,2018:6848-6856.
    [19] 刘慧杰,陈强. 基于ORB特征的改进RGB−D视觉里程计[J]. 制造业自动化,2022,44(7):56-59,106.

    LIU Huijie,CHEN Qiang. Improved RGB-D visual odometer based on ORB feature[J]. Manufacturing Automation,2022,44(7):56-59,106.
    [20] FAN Y C,HAN H,TANG Y L,et al. Dynamic objects elimination in SLAM based on image fusion[J]. Pattern Recognition Letters,2018,13(2):56-59.
    [21] NEWCOMBE R A,IZADI S,HILLIGES O,el al. KinectFusion:Real-time dense surface mapping and tracking[C]. The 10th IEEE International Symposium on Mixed and Augmented Reality,Basel,2011:127-136.
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  95
  • HTML全文浏览量:  28
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-22
  • 修回日期:  2024-05-22
  • 网络出版日期:  2024-06-13

目录

    /

    返回文章
    返回