留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于CED−YOLOv5s模型的煤矸识别方法研究

何凯 程刚 王希 葛庆楠 张辉 赵东洋

何凯,程刚,王希,等. 基于CED−YOLOv5s模型的煤矸识别方法研究[J]. 工矿自动化,2024,50(2):49-56, 82.  doi: 10.13272/j.issn.1671-251x.2023090065
引用本文: 何凯,程刚,王希,等. 基于CED−YOLOv5s模型的煤矸识别方法研究[J]. 工矿自动化,2024,50(2):49-56, 82.  doi: 10.13272/j.issn.1671-251x.2023090065
HE Kai, CHENG Gang, WANG Xi, et al. Research on coal gangue recognition method based on CED-YOLOv5s model[J]. Journal of Mine Automation,2024,50(2):49-56, 82.  doi: 10.13272/j.issn.1671-251x.2023090065
Citation: HE Kai, CHENG Gang, WANG Xi, et al. Research on coal gangue recognition method based on CED-YOLOv5s model[J]. Journal of Mine Automation,2024,50(2):49-56, 82.  doi: 10.13272/j.issn.1671-251x.2023090065

基于CED−YOLOv5s模型的煤矸识别方法研究

doi: 10.13272/j.issn.1671-251x.2023090065
基金项目: 安徽高校协同创新资助项目(GXXT-2021-076)。
详细信息
    作者简介:

    何凯(1998—),男,安徽滁州人,硕士研究生,研究方向为煤矸光电分选,E-mail:shuaikai1998@163.com

    通讯作者:

    程刚(1986—),男,安徽桐城人,副教授,研究方向煤矸光电分选与光机电一体化,E-mail:gang740@126.com

  • 中图分类号: TD67

Research on coal gangue recognition method based on CED-YOLOv5s model

  • 摘要: 由于煤矿井下高噪声、低照度、运动模糊的复杂工况和煤矸易聚集现象,导致煤矸目标检测模型特征提取困难及煤矸分类、定位不准确问题。针对该问题,提出一种基于CED−YOLOv5s模型的煤矸识别方法。首先,在YOLOv5s主干网络中引入坐标注意力 (CA) 机制,通过将坐标信息嵌入信道关系和长程依赖关系中对特征图进行编码,充分利用通道注意力信息和空间注意力信息,使模型更加关注重要特征,抑制无用信息。其次,在YOLOv5s的检测头部引入EIoU回归损失函数,将目标框与锚框的宽高差异最小化,以增强目标的位置和边界信息,提高模型在密集目标下的定位精度和收敛速度;最后,在YOLOv5s的检测头部引入轻量化解耦头,解耦出单独的特征通道,分别用于分类任务和回归任务,解决了原模型中耦合头部分类任务与回归任务的相互干扰问题,进一步提升了模型的并行运算效率与检测精度。实验结果表明: CED−YOLOv5s模型与其他YOLO系列目标检测模型相比,综合性能最佳,平均检测精度达94.8%,相较于YOLOv5s模型提升了3.1%,检测速度达84.8 帧/s,可充分满足煤矿井下煤矸实时检测需求。

     

  • 图  1  CED−YOLOv5模型结构

    Figure  1.  CED-YOLOv5 model structure

    图  2  CA模块结构

    Figure  2.  Structure of coordinate attention

    图  3  解耦头结构

    Figure  3.  Decoupled head structure

    图  4  煤矸图像采集实验台

    Figure  4.  Experimental platform for coal gangue image acquisition

    图  5  消融实验mAP曲线

    Figure  5.  mAP curves of ablation experiment

    图  6  初始人工标注结果

    Figure  6.  Initial manual annotation results

    图  7  不同算法在4种工况环境下的部分检测结果

    Figure  7.  Partial detection results of different algorithms under four operating conditions

    表  1  消融实验结果

    Table  1.   Results of ablation experiments

    模型 P/% R/% mAP/% T/ms
    A(YOLOv5s) 89.8 86.6 91.7 11.4
    B(模型 A+CA) 91.0 88.8 93.2 9.8
    C(模型 B+ EIoU) 91.6 88.2 93.9 10.0
    D(模型 C+ Decoupled_ Detect) 91.7 90.9 94.8 11.8
    下载: 导出CSV

    表  2  对比实验结果

    Table  2.   Comparative experimental results

    模型mAP/%FPSVolume /MiB
    YOLOv5n88.8119.53.9
    YOLOv5s91.787.718.4
    YOLOv5l93.170.492.9
    YOLOv7−tiny89.188.512.3
    YOLOv793.958.874.8
    CED−YOLOv5s94.884.824.6
    下载: 导出CSV
  • [1] 谢和平,任世华,谢亚辰,等. 碳中和目标下煤炭行业发展机遇[J]. 煤炭学报,2021,46(7):2197-2211.

    XIE Heping,REN Shihua,XIE Yachen,et al. Development opportunities of the coal industry towards the goal of carbon neutrality[J]. Journal of China Coal Society,2021,46(7):2197-2211.
    [2] 王国法,刘峰,孟祥军,等. 煤矿智能化(初级阶段)研究与实践[J]. 煤炭科学技术,2019,47(8):1-36.

    WANG Guofa,LIU Feng,MENG Xiangjun,et al. Research and practice on intelligent coal mine construction(primary stage)[J]. Coal Science and Technology,2019,47(8):1-36.
    [3] 王国法,刘峰,庞义辉,等. 煤矿智能化——煤炭工业高质量发展的核心技术支撑[J]. 煤炭学报,2019,44(2):349-357.

    WANG Guofa,LIU Feng,PANG Yihui,et al. Coal mine intellectualization:the core technology of high quality development[J]. Journal of China Coal Society,2019,44(2):349-357.
    [4] 刘峰,曹文君,张建明. 持续推进煤矿智能化 促进我国煤炭工业高质量发展[J]. 中国煤炭,2019,45(12):32-36. doi: 10.3969/j.issn.1006-530X.2019.12.006

    LIU Feng,CAO Wenjun,ZHANG Jianming. Continuously promoting the coal mine intellectualization and the high-quality development of China's coal industry[J]. China Coal,2019,45(12):32-36. doi: 10.3969/j.issn.1006-530X.2019.12.006
    [5] 王国法,任世华,庞义辉,等. 煤炭工业“十三五”发展成效与“双碳”目标实施路径[J]. 煤炭科学技术,2021,49(9):1-8.

    WANG Guofa,REN Shihua,PANG Yihui,et al. Development achievements of China's coal industry during the 13th Five-Year Plan period and future prospects[J]. Coal Science and Technology,2021,49(9):1-8.
    [6] 刘峰,曹文君,张建明,等. 我国煤炭工业科技创新进展及“十四五”发展方向[J]. 煤炭学报,2021,46(1):1-15.

    LIU Feng,CAO Wenjun,ZHANG Jianming,et al. Current technological innovation and development direction of the 14(th) Five-Year Plan period in China coal industry[J]. Journal of China Coal Society,2021,46(1):1-15.
    [7] PU Yuanyuan,APEL D B,SZMIGIEL A,et al. Image recognition of coal and coal gangue using a convolutional neural network and transfer learning[J]. Energies,2019,12(9). DOI: 10.3390/en12091735.
    [8] 雷世威,肖兴美,张明. 基于改进YOLOv3的煤矸识别方法研究[J]. 矿业安全与环保,2021,48(3):50-55.

    LEI Shiwei,XIAO Xingmei,ZHANG Ming. Research on coal and gangue identification method based on improved YOLOv3[J]. Mining Safety & Environmental Protection,2021,48(3):50-55.
    [9] 徐志强,吕子奇,王卫东,等. 煤矸智能分选的机器视觉识别方法与优化[J]. 煤炭学报,2020,45(6):2207-2216.

    XU Zhiqiang,LYU Ziqi,WANG Weidong,et al. Machine vision recognition method and optimization for intelligent separation of coal and gangue[J]. Journal of China Coal Society,2020,45(6):2207-2216.
    [10] 郭永存,王希,何磊,等. 基于TW−RN优化CNN的煤矸识别方法研究[J]. 煤炭科学技术,2022,50(1):228-236. doi: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201023

    GUO Yongcun,WANG Xi,HE Lei,et al. Research on coal and gangue recognition method based on TW-RN optimized CNN[J]. Coal Science and Technology,2022,50(1):228-236. doi: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201023
    [11] 李博,王学文,庞尚钟,等. 煤与矸石图像特征分析及试验研究[J]. 煤炭科学技术,2022,50(8):236-246.

    LI Bo,WANG Xuewen,PANG Shangzhong,et al. Image characteristics analysis and experimental study of coal and gangue[J]. Coal Science and Technology,2022,50(8):236-246.
    [12] 赵明辉. 一种煤矸石优化识别方法[J]. 工矿自动化,2020,46(7):113-116.

    ZHAO Minghui. A coal-gangue optimization identification method[J]. Industry and Mine Automation,2020,46(7):113-116.
    [13] 沈科,季亮,张袁浩,等. 基于改进YOLOv5s模型的煤矸目标检测[J]. 工矿自动化,2021,47(11):107-111,118.

    SHEN Ke,JI Liang,ZHANG Yuanhao,et al. Research on coal and gangue detection algorithm based on improved YOLOv5s model[J]. Industry and Mine Automation,2021,47(11):107-111,118.
    [14] 张磊,王浩盛,雷伟强,等. 基于YOLOv5s−SDE的带式输送机煤矸目标检测[J]. 工矿自动化,2023,49(4):106-112.

    ZHANG Lei,WANG Haosheng,LEI Weiqiang,et al. Coal gangue target detection of belt conveyor based on YOLOv5s-SDE[J]. Journal of Mine Automation,2023,49(4):106-112.
    [15] LIN T-Y,DOLLAR P,GIRSHICK R B,et al. Feature pyramid networks for object detection[C]. IEEE Conference on Computer Vision and Pattern Recognition,Honolulu,2017:936-944.
    [16] LIU Shu,QI Lu,QIN Haifang,et al. Path aggregation network for instance segmentation[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Salt Lake City,2018:8759-8768.
    [17] HOU Qibin,ZHOU Daquan,FENG Jiashi. Coordinate attention for efficient mobile network design[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Nashville,2021:13708-13717.
    [18] ZHENG Zhaohui,WANG Ping,LIU Wei,et al. Distance-IoU loss:faster and better learning for bounding box regression[EB/OL]. [2023-08-12]. https://arxiv.org/abs/1911.08287v1.
    [19] ZHANG Yifan,REN Weiqiang,ZHANG Zhang,et al. Focal and efficient IOU loss for accurate bounding box regression[J]. Neurocomputing,2022,506:146-157. doi: 10.1016/j.neucom.2022.07.042
    [20] SONG Guanglu,LIU Yu,WANG Xiaogang. Revisiting the sibling head in object detector[EB/OL]. [2023-08-12]. https://arxiv.org/abs/2003.07540.
    [21] WU Yue,CHEN Yinpeng,YUAN Lu,et al. Rethinking classification and localization for object detection[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Seattle,2020:10183-10192.
    [22] GE Zheng,LIU Songtao,WANG Feng,et al. YOLOX:exceeding YOLO series in 2021[EB/OL]. [2023-08-12]. https://arxiv.org/abs/2107.08430.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  619
  • HTML全文浏览量:  61
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-20
  • 修回日期:  2024-02-22
  • 网络出版日期:  2024-03-04

目录

    /

    返回文章
    返回