A bottom air temperature prediction model based on PSO-Elman neural network
-
摘要: 目前井下风温预测大多采用BP神经网络,但其预测精度受学习样本数量的影响,且容易陷入局部最优,Elman神经网络具备局部记忆能力,提高了网络的稳定性和动态适应能力,但仍然存在收敛速度过慢、易陷入局部最优的问题。针对上述问题,采用粒子群优化(PSO)算法对Elman神经网络的权值和阈值进行优化,建立了基于PSO−Elman神经网络的井底风温预测模型。分析得出入风相对湿度、入风温度、地面大气压力和井筒深度是井底风温的主要影响因素,因此将其作为模型的输入数据,模型的输出数据为井底风温。在相同样本数据集下的实验结果表明:Elman模型迭代90次后收敛,PSO−Elman模型迭代41次后收敛,说明PSO−Elman模型收敛速度更快;与BP神经网络模型、支持向量回归模型和Elman模型相比,PSO−Elman模型的预测误差较低,平均绝对误差、均方误差(MSE)、平均绝对百分比误差分别为0.376 0 ℃,0.278 3,1.95%,决定系数$ {{R}}^{\text{2}} $为0.992 4,非常接近1,表明预测模型具有良好的预测效果。实例验证结果表明,PSO−Elman模型的相对误差范围为−4.69%~1.27%,绝对误差范围为−1.06~0.29 ℃,MSE为0.26,整体预测精度可满足井下实际需要。Abstract: Currently, most underground wind temperature predictions use BP neural networks. But their prediction precision is affected by the number of learning samples and they are prone to falling into local optima. Elman neural networks have local memory capability, which improves the stability and dynamic adaptability of the network. However, there are still problems such as slow convergence speed and easy falling into local optima. In order to solve the above problems, the particle swarm optimization (PSO) algorithm is used to optimize the weights and thresholds of the Elman neural network. A bottom air temperature prediction model based on the PSO Elman neural network is established. The analysis shows that the relative humidity of the inlet and outlet wind, the surface inlet wind temperature, the surface atmospheric pressure, and the depth of the shaft are the main influencing factors of the bottom air temperature. Therefore, they are used as input data for the model, and the output data of the model is the bottom air temperature. The experimental results on the same sample dataset show that the Elman model converges at 90 iterations and the PSO Elman model converges at 41 iterations. It indicates that the PSO-Elman model converges faster. Compared with the BP neural network model, support vector regression (SVR) model, and Elman model, the prediction error of the PSO-Elman model is significantly reduced. The mean absolute error, mean square error (MSE), and mean absolute percentage error are 0.376 0 ℃, 0.278 3, and 1.95%, respectively. The determination coefficient R2 is 0.992 4, which is very close to 1, indicating that the prediction model has good predictive performance. The verification results of the example show that the relative error range of the PSO-Elman model is −4.69%-1.27%, the absolute error range is −1.06-0.29 ℃, and the MSE is 0.26. The overall prediction precision can meet the actual needs of the underground.
-
表 1 样本数据
Table 1. Sample data
序号 地面大气
压力/Pa入风
温度/℃入风相对
湿度/%井筒
深度/m井底
风温/℃1 99862.8 26.8 80.23 558.90 25.6 2 99936.2 27.7 76.78 558.90 27.8 3 99868.9 26.5 80.05 552.50 26.5 4 99982.3 27.6 74.26 552.50 27.6 5 99965.1 26.8 78.88 673.20 25.3 $\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $ 63 92240.0 14.0 51.70 417.54 16.2 64 91860.0 13.8 58.40 417.54 16.0 65 91420.0 12.2 67.60 417.54 15.2 表 2 4种模型的井底风温预测结果及误差
Table 2. Prediction results and errors of bottom air temperature of four models
样本
编号真实
值/℃BP神经网络模型 SVR模型 Elman模型 PSO−Elman模型 预测
值/℃绝对误
差/℃相对误
差/%预测
值/℃绝对误
差/℃相对误
差/%预测
值/℃绝对误
差/℃相对误
差/%预测
值/℃绝对误
差/℃相对误
差/%1 27.9 27.2131 −0.6869 −2.46 27.8983 −0.0017 −0.01 27.7709 −0.1291 −0.46 27.8026 −0.0974 −0.35 2 27.6 26.9595 −0.6405 −2.32 27.7180 0.1180 0.43 27.0653 0.0053 0.02 27.6048 0.0048 −0.02 3 28.9 27.2982 −1.6018 −5.54 27.9765 −0.9235 −3.20 27.8461 −1.0539 −3.65 27.8981 −1.0019 −3.47 4 27.4 27.1367 −0.2633 −0.96 27.6248 0.2248 0.82 27.5246 0.1246 0.45 27.6149 0.2149 0.78 5 28.0 27.4548 −0.5452 −1.95 28.3935 0.3935 1.41 28.1950 0.1950 0.70 28.1494 0.1494 0.53 6 16.2 16.4894 0.2894 1.79 15.2606 −0.9394 −5.80 15.1536 −1.0464 −6.46 16.3820 0.1820 1.12 7 15.8 14.8908 −0.9092 −5.75 14.6212 −1.1788 −7.46 14.6948 −1.1052 −6.99 14.7649 −1.0351 −6.55 8 16.2 15.2269 −0.9731 −6.01 15.0037 −1.1963 −7.38 14.9791 −1.2209 −7.54 15.4598 −0.7402 −4.57 9 16.0 16.4385 0.4385 2.74 14.8663 −1.1337 −7.09 14.8427 −1.1573 −7.23 15.7786 −0.2214 −1.38 10 15.2 17.7870 2.5870 17.02 13.7536 −1.4464 −9.52 13.9971 −1.2029 −7.91 15.3130 0.1130 −0.74 表 3 4种预测模型的评估指标
Table 3. Evaluation indicators of four prediction models
模型 MAE/℃ MSE MAPE/% $ {R}^{2} $ BP神经网络 0.8935 1.2557 4.65 0.9658 SVR 0.7556 0.8153 4.31 0.9985 Elman 0.7241 0.7774 4.14 0.9788 PSO−Elman 0.3760 0.2783 1.95 0.9924 表 4 井下实测数据
Table 4. Underground measured data
测点位置 入风温度/℃ 入风相对
湿度/%地面大气
压力/Pa井筒深度/m 井底风温/℃ 副井 20.8 71.40 104610 521.5 24.3 21.2 82.00 104660 521.5 23.0 回风联络巷 21.6 88.00 102668 521.5 22.6 一车场 21.8 86.90 104633 521.5 22.8 运输大巷 22.4 78.80 106604 521.5 24.6 表 5 井底风温预测数据评估结果
Table 5. Evaluation results of prediction data of bottom air temperature
真实值/℃ 预测值/℃ 绝对误差/℃ 相对误差% MSE 24.3 24.46 0.14 0.66 0.26 23.0 22.82 −0.18 −0.78 22.6 21.54 −1.06 −4.69 22.8 23.09 0.29 1.27 24.6 24.38 −0.22 −0.89 -
[1] 王超,李岳峰,张成良. 基于不同指标无量纲化方法的岩爆预测模型优选[J]. 中国安全生产科学技术,2020,16(2):24-29.WANG Chao,LI Yuefeng,ZHANG Chengliang. Optimization of rockburst prediction model based on different index dimensionless methods[J]. Journal of Safety Science and Technology,2020,16(2):24-29. [2] 杨小彬,裴艳宇,程虹铭,等. 基于SOFM神经网络模型的岩爆烈度等级预测方法[J]. 岩石力学与工程学报,2021,40(增刊1):2708-2715.YANG Xiaobin,PEI Yanyu,CHENG Hongming,et al. Prediction method of rockburst intensity grade based on SOFM neural network model[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(S1):2708-2715. [3] 付华,付昱,赵俊程,等. 基于KPCA−ARIMA算法的瓦斯涌出量预测[J]. 辽宁工程技术大学学报(自然科学版),2022,41(5):406-412.FU Hua,FU Yu,ZHAO Juncheng,et al. Prediction of gas emission based on KPCA-ARIMA algorithm[J]. Journal of Liaoning Technical University(Natural Science),2022,41(5):406-412. [4] 马恒,任美学,高科. 基于随机搜索优化XGBoost的瓦斯涌出量预测模型[J]. 中国安全生产科学技术,2022,18(5):129-134.MA Heng,REN Meixue,GAO Ke. Prediction model of gas emission amount based on XGBoost optimized with random search algorithm[J]. Journal of Safety Science and Technology,2022,18(5):129-134. [5] 汤国水,张宏伟,韩军,等. 基于MABC−SVM的含瓦斯煤体渗透率预测模型[J]. 中国安全生产科学技术,2015,11(2):11-16.TANG Guoshui,ZHANG Hongwei,HAN Jun,et al. Prediction model on permeability of gas-bearing coal based on MABC-SVM[J]. Journal of Safety Science and Technology,2015,11(2):11-16. [6] 谢丽蓉,路朋,范文慧,等. 基于LVQ−CPSO−BP算法的煤体瓦斯渗透率预测方法研究[J]. 采矿与安全工程学报,2017,34(2):398-404.XIE Lirong,LU Peng,FAN Wenhui,et al. LVQ-CPSO-BP-based prediction technique of coal gas permeability rate[J]. Journal of Mining & Safety Engineering,2017,34(2):398-404. [7] 高佳南,吴奉亮,马砺,等. 矿井淋水井筒风温PSO-SVR预测方法[J]. 西安科技大学学报,2022,42(3):476-483.GAO Jianan,WU Fengliang,MA Li,et al. PSO−SVR prediction method of airflow temperature of shaft with water dropping in mine[J]. Journal of Xi'an University of Science and Technology,2022,42(3):476-483. [8] 纪俊红,马铭阳,崔铁军,等. GSK−XGBoost模型在井底风温预测中的应用[J]. 中国安全生产科学技术,2022,18(3):131-136.JI Junhong,MA Mingyang,CUI Tiejun,et al. Application of GSK-XGBoost model in prediction of wind temperature at well bottom[J]. Journal of Safety Science and Technology,2022,18(3):131-136. [9] 吕品,左金宝,倪小军. 基于BP神经网络的矿井淋水井筒风温预测[J]. 煤矿安全,2008,39(12):11-13.LYU Pin,ZUO Jinbao,NI Xiaojun. BP neural network for predicting air temperature of watering well in mine[J]. Safety in Coal Mines,2008,39(12):11-13. [10] 张翔,王佰顺,徐硕,等. 基于PSO−BP的矿井淋水井筒风温预测[J]. 煤矿安全,2012,43(11):178-181.ZHANG Xiang,WANG Baishun,XU Shuo,et al. Prediction of airflow temperature of shafts with water dropping based on PSO−BP neural network[J]. Safety in Coal Mines,2012,43(11):178-181. [11] 马恒,刘亮亮. 基于T−S模糊神经网络的淋水井筒温度预测分析[J]. 世界科技研究与发展,2015,37(3):226-229.MA Heng,LIU Liangliang. Prediction analysis of temperature of wellbore with spay water based on T-S fuzzy neural network[J]. World Sci-tech R & D,2015,37(3):226-229. [12] 段艳艳. 基于支持向量机的矿井风温预测[D]. 西安:西安科技大学,2013.DUAN Yanyan. Prediction of the mine air temperature based on support vector machine[D]. Xi'an:Xi'an University of Science and Technology,2013. [13] 张群. 潘三矿热害调查及风温预测研究[D]. 淮南:安徽理工大学,2015.ZHANG Qun. The thermal damage investigation and wind temperature prediction research of Panji No. 3 Colliery[D]. Huainan:Anhui University of Science and Technology,2015. [14] 何启林,任克斌. 深井建井期入风井筒风温的预测[J]. 煤炭工程,2002,34(8):47-48. doi: 10.3969/j.issn.1671-0959.2002.08.020HE Qilin,REN Kebin. Prediction of air temperature in the inlet well during deep well construction period[J]. Coal Engineering,2002,34(8):47-48. doi: 10.3969/j.issn.1671-0959.2002.08.020 [15] 顾伟红,赵雪. 基于GRA−SSA−Elman的隧道施工瓦斯安全性预测评价[J]. 自然灾害学报,2023,32(6):230-239.GU Weihong,ZHAO Xue. Gas safety prediction and evaluation of tunnel construction based on GRA-SSA-Elman[J]. Journal of Natural Disasters,2023,32(6):230-239. [16] 乔寅威,贾新春,关燕鹏,等. 基于DE−WOA的Elman神经网络的空气质量预测方法及应用 [J/OL]. 控制工程,1-8[2023-08-17]. https://doi.org/10.14107/j.cnki.kzgc.20220929.QIAO Yinwei,JIA Xinchun,GUAN Yanpeng,et al. Air quality prediction method and its application of Elman neural network based on DE-WOA[J/OL]. Control Engineering of China,1-8[2023-08-17]. https://doi.org/10.14107/j.cnki.kzgc.20220929. [17] 吴定会,朱勇,范俊岩,等. 基于双重注意力IJAYA−Elman的高炉煤气柜位预测[J/OL]. 控制工程,1-9[2023-08-17]. https://doi.org/10.14107/j.cnki.kzgc.20220463.WU Dinghui,ZHU Yong,FAN Junyan,et al. Prediction of blast furnace gas holder lever based on double attention IJAYA-Elman[J/OL]. Control Engineering of China,1-9[2023-08-17]. https://doi.org/10.14107/j.cnki.kzgc.20220463. [18] 李练兵,朱乐,李思佳,等. 基于差分电压和ICS−Elman神经网络的锂离子电池剩余使用寿命预测方法[J]. 太阳能学报,2023,44(12):433-443.LI Lianbing,ZHU Le,LI Sijia,et al. Remaining useful life prediction of lithium-ion batteries based on differential voltage and ICS-Elman neural networks[J]. Acta Energiae Solaris Sinica,2023,44(12):433-443. [19] 韩会宾. 基于目标PSO算法的工程项目优化研究[J]. 西南大学学报(自然科学版),2023,45(12):167-177.HAN Huibin. Research on engineering project optimization based on target PSO algorithm[J]. Journal of Southwest University(Natural Science Edition),2023,45(12):167-177. [20] 焦龄霄,周凯,张子熙,等. 基于mRMR−IPSO的短期负荷预测双阶段特征选择 [J/OL]. 重庆大学学报,1-13[2023-08-17]. http://kns.cnki.net/kcms/detail/50.1044.N.20231206.1636.002.html.JIAO Lingxiao,ZHOU Kai,ZHANG Zixi,et al. Dual-stage feature selection for short-term load forecasting based on mRMR-IPSO[J/OL]. Journal of Chongqing University,1-13[2023-08-17]. http://kns.cnki.net/kcms/detail/50.1044.N.20231206.1636.002.html. [21] 吴以童,李斌,刘春,等. 融合GMM和PSO的储罐超声检测机器人避障研究[J]. 计算机仿真,2023,40(11):408-414. doi: 10.3969/j.issn.1006-9348.2023.11.078WU Yitong,LI Bin,LIU Chun,et al. Research on obstacle avoidance of storage tank ultrasonic inspection robot integrating GMM and PSO[J]. Computer Simulation,2023,40(11):408-414. doi: 10.3969/j.issn.1006-9348.2023.11.078