留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水力压裂弱化顶板护孔技术

薛江达 孙永康 王军 张庚

薛江达,孙永康,王军,等. 水力压裂弱化顶板护孔技术[J]. 工矿自动化,2024,50(3):160-166.  doi: 10.13272/j.issn.1671-251x.2023080114
引用本文: 薛江达,孙永康,王军,等. 水力压裂弱化顶板护孔技术[J]. 工矿自动化,2024,50(3):160-166.  doi: 10.13272/j.issn.1671-251x.2023080114
XUE Jiangda, SUN Yongkang, WANG Jun, et al. Hydraulic fracturing weakening roof borehole protection technology[J]. Journal of Mine Automation,2024,50(3):160-166.  doi: 10.13272/j.issn.1671-251x.2023080114
Citation: XUE Jiangda, SUN Yongkang, WANG Jun, et al. Hydraulic fracturing weakening roof borehole protection technology[J]. Journal of Mine Automation,2024,50(3):160-166.  doi: 10.13272/j.issn.1671-251x.2023080114

水力压裂弱化顶板护孔技术

doi: 10.13272/j.issn.1671-251x.2023080114
基金项目: 国家自然科学基金资助项目(52004176)。
详细信息
    作者简介:

    薛江达(1998—),男,河南濮阳人,硕士研究生,主要研究方向为煤矿安全和瓦斯治理技术,E-mail:xuejiangda@126.com

    通讯作者:

    王军(1982—),男,山西和顺人,副研究员,硕士,主要研究方向为煤矿瓦斯及火防治理论与技术,E-mail:wangjun02182@163.com

  • 中图分类号: TD712.6

Hydraulic fracturing weakening roof borehole protection technology

  • 摘要: 煤矿工作面单翼布置顺序开采的情况下,工作面顺层钻孔容易受到邻近工作面采动支承应力影响导致钻孔失效。现阶段的护孔研究集中在增强钻孔本身强度,未针对影响钻孔稳定性的根本性因素提出解决措施。针对上述问题,提出了一种水力压裂弱化顶板护孔技术。通过水力压裂弱化顶板,减小作用在邻近工作面煤体上的采动支承应力峰值,阻断高支承应力向顺层钻孔周围煤体的传递,并在顺层钻孔内全程下筛管,保证煤体逸散出的瓦斯可以进入顺层钻孔。采用数值模拟分析了水力压裂弱化顶板前后顺层钻孔周围煤体垂直应力和塑性区变化规律,结果表明:通过水力压裂弱化顶板,顺层钻孔周围煤体的垂直应力峰值由21.2 MPa降低为9.1 MPa,煤体塑性区范围由19 m减小为11 m。根据数值模拟结果确定的水力压裂参数进行了现场测试,结果表明:采用水力压裂弱化顶板护孔技术后,钻孔瓦斯抽采体积分数平均值由3.6%提高到14.1%,瓦斯抽采混合流量平均值由1.28 m³/min降低为0.464 m³/min,未出现大范围顺层钻孔内发生煤体氧化而产生CO的情况。因此,水力压裂弱化顶板护孔技术可有效避免钻孔失效漏气,提高钻孔抽采效果,保证钻孔抽采安全。

     

  • 图  1  工作面地质柱状图

    Figure  1.  Geological column histogram of the working face

    图  2  工作面布置

    Figure  2.  Layout of the working face

    图  3  钻孔围岩弹塑性区分布

    1—破碎区;2—塑性区;3—弹性区;4—原岩应力区。

    Figure  3.  Distribution of borehole surrounding rock elastoplastic zones

    图  4  数值模型

    Figure  4.  Numerical model

    图  5  钻孔周围煤体应力分布云图

    Figure  5.  Cloud map of coal stress distribution around borehole

    图  6  水力压裂弱化顶板前煤体垂直应力演化规律

    Figure  6.  Evolution law of vertical stress of coal before hydraulic fracturing weakening roof

    图  7  水力压裂弱化顶板后煤体垂直应力演化规律

    Figure  7.  Evolution law of vertical stress of coal after hydraulic fracturing weakening roof

    图  8  水力压裂弱化顶板前后回采40 m时煤体塑性区分布

    Figure  8.  Plastic zone distribution of coal when mining 40 m before and after hydraulic fracturing weakening roof

    图  9  水力压裂弱化顶板施工

    Figure  9.  Construction of hydraulic fracturing weakening roof

    图  10  瓦斯抽采体积分数变化曲线

    Figure  10.  Variation curve of gas extraction volume fraction

    图  11  瓦斯抽采混合流量变化曲线

    Figure  11.  Variation curve of mixed flow rate of gas extraction

    图  12  CO体积分数变化曲线

    Figure  12.  Variation curve of CO volume fraction

    表  1  各岩层物理力学参数

    Table  1.   Physical and mechanical parameters of each rock formation

    岩性 体积模量/GPa 剪切模量/GPa 黏聚力/MPa 内摩擦角/(°) 抗拉强度/MPa 密度/(kg·m−3
    铝质泥岩 10.0 5.00 2.50 40 2.0 2 530
    15号煤 5.3 2.36 1.25 32 1.5 1 380
    泥岩01 10.0 6.00 1.50 23 1.3 2 300
    14号煤 5.3 2.36 1.25 32 1.5 1 380
    泥岩02 10.0 6.00 1.50 23 1.3 2 300
    K2石灰岩 14.0 9.00 3.00 40 2.0 2 800
    细粒砂岩 15.0 9.20 2.70 32 2.5 2 700
    下载: 导出CSV
  • [1] 詹小凡. 煤与瓦斯突出事故分析及预测研究[D]. 阜新:辽宁工程技术大学,2020.

    ZHAN Xiaofan. Accidents analysis and prediction of coal and gas outburst[D]. Fuxin:Liaoning Technical University,2020.
    [2] 孙杰,陈美英,唐朝苗,等. 我国煤炭资源勘查现状跟踪研究[J]. 中国煤炭地质,2017,29(11):1-8. doi: 10.3969/j.issn.1674-1803.2017.11.01

    SUN Jie,CHEN Meiying,TANG Zhaomiao,et al. Tracking study of coal resources exploration status quo in China[J]. Coal Geology of China,2017,29(11):1-8. doi: 10.3969/j.issn.1674-1803.2017.11.01
    [3] 王刚,杨曙光,张寿平,等. 新疆煤矿区瓦斯抽采利用技术现状及展望[J]. 煤炭科学技术,2020,48(3):154-161.

    WANG Gang,YANG Shuguang,ZHANG Shouping,et al. Status and prospect of coal mine gas drainage and utilization technology in Xinjiang Coal Mining Area[J]. Coal Science and Technology,2020,48(3):154-161.
    [4] 刘军,卢鹏,刘志宽,等. 顺层钻孔瓦斯抽采叠加效应影响研究[J/OL]. 煤炭科学技术:1-11[2024-03-25]. http://kns.cnki.net/kcms/detail/11.2402.TD.20231120.1014.001.html.

    LIU Jun,LU Peng,LIU Zhikuan,et al. Study on the influence of superimposed effect of gas extraction in downhole drilling[J/OL]. Coal Science and Technology:1-11[2024-03-25]. http://kns.cnki.net/kcms/detail/11.2402.TD.20231120.1014.001.html.
    [5] 叶兰. 我国瓦斯事故规律及预防措施研究[J]. 中国煤层气,2020,17(4):44-47. doi: 10.3969/j.issn.1672-3074.2020.04.010

    YE Lan. Research on rules and prevention measures of gas accidents in China[J]. China Coalbed Methane,2020,17(4):44-47. doi: 10.3969/j.issn.1672-3074.2020.04.010
    [6] 张剀文. 顺层钻孔瓦斯抽采浓度影响机理及其调控优化研究[D]. 西安:西安科技大学,2022.

    ZHANG Kaiwen. Study on the influence mechanism of gas extraction concentration and its regulation and optimization in bedding borehole[D]. Xi'an:Xi'an University of Science and Technology,2022.
    [7] 许胜军. 基于UDEC和D−P准则的煤层钻孔稳定性分析[J]. 煤矿安全,2013,44(3):160-162,165.

    XU Shengjun. Seam drilling stability analysis based on UDEC and D-P standards[J]. Safety in Coal Mines,2013,44(3):160-162,165.
    [8] 王超,张雷林,翟文杰,等. 五轮山煤矿瓦斯抽采钻孔封孔工艺优化研究[J]. 煤炭技术,2019,38(5):99-101.

    WANG Chao,ZHANG Leilin,ZHAI Wenjie,et al. Optimization study on sealing process of gas drainage borehole in Wulunshan Coal Mine[J]. Coal Technology,2019,38(5):99-101.
    [9] 姚向荣,程功林,石必明. 深部围岩遇弱结构瓦斯抽采钻孔失稳分析与成孔方法[J]. 煤炭学报,2010,35(12):2073-2081.

    YAO Xiangrong,CHENG Gonglin,SHI Biming. Analysis on gas extraction drilling instability and control method of pore-forming in deep surrounding-rock with weak structure[J]. Journal of China Coal Society,2010,35(12):2073-2081.
    [10] 叶高榜. 内支撑护孔管提高瓦斯抽采钻孔稳定性技术及应用研究[D]. 徐州:中国矿业大学,2017.

    YE Gaobang. Study and application on improving the stability of gas drainage drilling by high strength inner support pipe[D]. Xuzhou:China University of Mining and Technology,2017.
    [11] 孟晓红. 松软煤层瓦斯抽放钻孔塌孔机理及改进措施研究[D]. 太原:太原理工大学,2016.

    MENG Xiaohong. Study on mechanism of borehole collapse and improvement measures of gas drainage borehole in soft coal seam[D]. Taiyuan:Taiyuan University of Technology,2016.
    [12] 张金宝. 高位定向长钻孔水力输送对接筛管护孔技术研究[J/OL]. 煤炭科学技术:1-11[2024-03-25]. http://kns.cnki.net/kcms/detail/11.2402.TD.20240321.1542.001.html.

    ZHANG Jinbao. Research on hole protection technology of screen pipe for hydraulic transportation and automatic butt joint in high position directional borehole[J/OL]. Coal Science and Technology:1-11[2024-03-25]. http://kns.cnki.net/kcms/detail/11.2402.TD.20240321.1542.001.html.
    [13] 李润泽,刘飞. 瓦斯抽采钻孔全孔段筛管护孔工艺技术研究[J]. 能源技术与管理,2023,48(3):30-32. doi: 10.3969/j.issn.1672-9943.2023.03.009

    LI Runze,LIU Fei. Study on full-hole slotting and pipe screen hole protection technology for gas extraction borehole[J]. Energy Technology and Management,2023,48(3):30-32. doi: 10.3969/j.issn.1672-9943.2023.03.009
    [14] 陈超,陈天柱,张马军,等. 孤岛工作面碎软煤层跟管护孔钻进工艺研究[J]. 工矿自动化,2023,49(1):73-79.

    CHEN Chao,CHEN Tianzhu,ZHANG Majun,et al. Research on pipe-following hole protection drilling technology in broken soft coal seam of the isolated island working face[J]. Journal of Mine Automation,2023,49(1):73-79.
    [15] 张鹏,秦政,李峰. 松软煤层大孔径瓦斯抽采钻孔护孔技术研究[J]. 煤炭与化工,2021,44(3):92-95.

    ZHANG Peng,QIN Zheng,LI Feng. Study on hole protection technology of large diameter gas extraction boreholes in loose and soft coal seams[J]. Coal and Chemical Industry,2021,44(3):92-95.
    [16] 靖洪文,孟庆彬,朱俊福,等. 深部巷道围岩松动圈稳定控制理论与技术进展[J]. 采矿与安全工程学报,2020,37(3):429-442.

    JING Hongwen,MENG Qingbin,ZHU Junfu,et al. Theoretical and technical progress of stability control of broken rock zone of deep roadway surrounding rock[J]. Journal of Mining & Safety Engineering,2020,37(3):429-442.
    [17] 傅航,马宏发,宋彦琦. 深部硐室群巷道围岩变形机理及控制技术研究[J]. 煤炭工程,2021,53(12):49-54.

    FU Hang,MA Hongfa,SONG Yanqi. Mechanism and control of surrounding rock deformation of deep chamber group roadway[J]. Coal Engineering,2021,53(12):49-54.
    [18] 苏士龙,高海海,周康乐. 基于统一强度理论的巷道围岩松动圈计算方法[J]. 科学技术与工程,2020,20(27):11045-11050. doi: 10.3969/j.issn.1671-1815.2020.27.010

    SU Shilong,GAO Haihai,ZHOU Kangle. Calculation method of roadway surrounding rock loose circle based on unified strength theory[J]. Science Technology and Engineering,2020,20(27):11045-11050. doi: 10.3969/j.issn.1671-1815.2020.27.010
    [19] 陈梁,茅献彪,李明,等. 基于Drucker−Prager准则的深部巷道破裂围岩弹塑性分析[J]. 煤炭学报,2017,42(2):484-491.

    CHEN Liang,MAO Xianbiao,LI Ming,et al. Elastoplastic analysis of cracked surrounding rock in deep roadway based on Drucker-Prager criterion[J]. Journal of China Coal Society,2017,42(2):484-491.
    [20] 范文,俞茂宏,陈立伟,等. 考虑剪胀及软化的洞室围岩弹塑性分析的统一解[J]. 岩石力学与工程学报,2004,23(19):3213-3220.

    FAN Wen,YU Maohong,CHEN Liwei,et al. Unified elastoplastic solution for surrounding rocks of openings with consideration of material dilatancy and softening[J]. Chinese Journal of Rock Mechanics and Engineering,2004,23(19):3213-3220.
    [21] 郝宪杰,袁亮,卢志国,等. 考虑煤体非线性弹性力学行为的弹塑性本构模型[J]. 煤炭学报,2017,42(4):896-901.

    HAO Xianjie,YUAN Liang,LU Zhiguo,et al. An elastic-plastic-soften constitutive model of coal considering its nonlinear elastic mechanical behavior[J]. Journal of China Coal Society,2017,42(4):896-901.
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  72
  • HTML全文浏览量:  35
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-29
  • 修回日期:  2024-03-26
  • 网络出版日期:  2024-04-11

目录

    /

    返回文章
    返回