留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于去尘估计和多重曝光融合的煤矿井下图像增强方法

郝博南

郝博南. 基于去尘估计和多重曝光融合的煤矿井下图像增强方法[J]. 工矿自动化,2023,49(11):100-106.  doi: 10.13272/j.issn.1671-251x.2023080105
引用本文: 郝博南. 基于去尘估计和多重曝光融合的煤矿井下图像增强方法[J]. 工矿自动化,2023,49(11):100-106.  doi: 10.13272/j.issn.1671-251x.2023080105
HAO Bonan. Coal mine underground image enhancement method based on dust removal estimation and multiple exposure fusion[J]. Journal of Mine Automation,2023,49(11):100-106.  doi: 10.13272/j.issn.1671-251x.2023080105
Citation: HAO Bonan. Coal mine underground image enhancement method based on dust removal estimation and multiple exposure fusion[J]. Journal of Mine Automation,2023,49(11):100-106.  doi: 10.13272/j.issn.1671-251x.2023080105

基于去尘估计和多重曝光融合的煤矿井下图像增强方法

doi: 10.13272/j.issn.1671-251x.2023080105
基金项目: 国家自然科学基金青年基金项目(42201386);天地科技股份有限公司科技创新创业资金专项项目(2023-TD-ZD005-005,2022-2-TD-ZD001,2022-TD-ZD001)。
详细信息
    作者简介:

    郝博南(1993—),男,河北唐山人,助理研究员,硕士,现从事矿井视频分析技术的相关研究工作,E-mail:haobonan@ccrise.cn

  • 中图分类号: TD67

Coal mine underground image enhancement method based on dust removal estimation and multiple exposure fusion

  • 摘要: 煤矿井下粉尘和暗光等因素导致采集的图像质量低,而现有图像增强方法存在图像细节丢失、局部特征不清晰、无法消除噪声、去尘效果不理想等问题。针对上述问题,提出了一种基于去尘估计和多重曝光融合的煤矿井下图像增强方法。该方法通过尘化图像简易模型及暗原色理论,并引入自适应衰减系数估算出图像透射率,再根据透射率分布,通过尘化图像简易模型复原物体的原始图像,将煤矿井下图像中的粉尘去除;利用多重曝光融合算法为曝光不足的原始图像生成一组不同曝光比的图像,并引入权值矩阵将这些不同曝光比的图像与原始图像进行融合,有效提升暗光图像质量。实验结果表明:相较于直方图均衡法、带色彩恢复的Retinex(MSRCR)方法、改进Retinex方法,该方法在去尘及暗光增强方面效果较好,颜色还原度较高,白边和过曝等现象得到抑制,且增强后的图像平均对比度分别提升了169.00%,42.50%,10.88%,平均图像熵分别提升了51.80%,16.45%,8.99%,平均亮度顺序误差(LOE)分别降低了31.01%,16.94%,7.83%,同时该方法运算耗时最短。

     

  • 图  1  基于去尘估计和多重曝光融合的煤矿井下图像增强方法流程

    Figure  1.  Process of coal mine underground image enhancement method based on dust removal estimation and multiple exposure fusion

    图  2  多重曝光融合算法原理

    Figure  2.  Principle of multiple exposure fusion algorithm

    图  3  3种场景下不同方法增强效果

    Figure  3.  Enhancement effect of different methods in three scenarios

    图  4  不同方法运算耗时

    Figure  4.  Operation time of different methods

    表  1  消融实验结果

    Table  1.   Results of ablation experiment

    图像平均对比度平均图像熵平均LOE
    原始图像15.113.801 600
    去尘处理后图像32.865.301 209
    暗光增强处理后图像29.735.171 180
    本文方法处理后图像70.867.19814
    下载: 导出CSV

    表  2  不同方法图像增强客观评价结果

    Table  2.   Objective evaluation results of image enhancement by different methods

    方法RESIDEHazeRDVVMEF
    对比度图像熵LOE对比度图像熵LOE对比度图像熵LOE对比度图像熵LOE
    直方图均衡法23.854.971 07126.745.021 32425.124.751 14628.374.881 103
    MSRCR方法49.396.1289252.936.081 20351.166.2499342.746.11879
    改进Retinex方法61.556.5280169.326.431 08964.506.7191456.826.58771
    本文方法70.247.0873978.357.111 01572.587.4384367.666.99702
    下载: 导出CSV

    表  3  不同方法图像增强客观评价结果平均值

    Table  3.   Objective evaluation average results of image enhancement by different methods

    方法平均对比度平均图像熵平均LOE
    直方图均衡法26.024.711 161
    MSRCR方法49.066.14992
    改进Retinex方法63.056.56894
    本文方法69.917.15824
    下载: 导出CSV
  • [1] 程德强,钱建生,郭星歌,等. 煤矿安全生产视频AI识别关键技术研究综述[J]. 煤炭科学技术,2023,51(2):349-365.

    CHENG Deqiang,QIAN Jiansheng,GUO Xingge,et al. Review on key technologies of AI recognition for videos in coal mine[J]. Coal Science and Technology,2023,51(2):349-365.
    [2] 孔二伟,张亚邦,李佳悦,等. 面向煤矿井下低光照图像的增强方法[J]. 工矿自动化,2023,49(4):62-69,85.

    KONG Erwei,ZHANG Yabang,LI Jiayue,et al. An enhancement method for low light images in coal mines[J]. Journal of Mine Automation,2023,49(4):62-69,85.
    [3] 龚云,颉昕宇. 基于同态滤波方法的煤矿井下图像增强技术研究[J]. 煤炭科学技术,2023,51(3):241-250.

    GONG Yun,XIE Xinyu. Research on coal mine underground image recognition technology based on homomorphic filtering method[J]. Coal Science and Technology,2023,51(3):241-250.
    [4] JIANG He,CAI Huangkai,YANG Jie. Learning in-place residual homogeneity for image detail enhancement[C]. IEEE International Conference on Acoustics,Speech and Signal Processing,Calgary,2018:1428-1432.
    [5] 智宁,毛善君,李梅. 基于双伽马函数的煤矿井下低亮度图像增强算法[J]. 辽宁工程技术大学学报(自然科学版),2018,37(1):191-197.

    ZHI Ning,MAO Shanjun,LI Mei. An enhancement algorithm for coal mine low illumination images based on bi-gamma function[J]. Journal of Liaoning Technical University(Natural Science),2018,37(1):191-197.
    [6] 冯玮,姚顽强,蔺小虎,等. 顾及图像增强的煤矿井下视觉同时定位与建图算法[J]. 工矿自动化,2023,49(5):74-81.

    FENG Wei,YAO Wanqiang,LIN Xiaohu,et al. Visual simultaneous localization and mapping algorithm of coal mine underground considering image enhancement[J]. Journal of Mine Automation,2023,49(5):74-81.
    [7] 纪平,胡学友,张瑞琦. 基于直方图均衡算法的图像增强技术研究[J]. 蚌埠学院学报,2021,10(2):40-43.

    JI Ping,HU Xueyou,ZHANG Ruiqi. Research on image enhancement technology based on histogram equalization algorithm[J]. Journal of Bengbu University,2021,10(2):40-43.
    [8] ZHAO Lijun,BAI Huihui,LIANG Jie,et al. Local activity-driven structural-preserving filtering for noise removal and image smoothing[J]. Signal Processing,2019,157:62-72. doi: 10.1016/j.sigpro.2018.11.012
    [9] 魏华良,王金祥. 运动模糊数字图像边缘锐化增强仿真研究[J]. 计算机仿真,2020,37(7):459-462,497.

    WEI Hualiang,WANG Jinxiang. Simulation research on edge sharpening enhancement of motion blurred digital image[J]. Computer Simulation,2020,37(7):459-462,497.
    [10] 贺元恺. 基于FPGA的实时图像去雾系统研究与设计[D]. 西安:西安科技大学,2020.

    HE Yuankai. Research and design of real-time image defogging system based on FPGA[D]. Xi'an:Xi'an University of Science and Technology,2020.
    [11] 吴开兴,张琳,李丽宏. 煤矿井下雾尘图像清晰化算法[J]. 工矿自动化,2018,44(3):70-75.

    WU Kaixing,ZHANG Lin,LI Lihong. Sharpening algorithm for underground images with fog and dust[J]. Industry and Mine Automation,2018,44(3):70-75.
    [12] ZHAN Yutong,GAO Kun,WANG Junwei,et al. Single-image dehazing using extreme reflectance channel prior[J]. IEEE Access,2021,9:87826-87838. doi: 10.1109/ACCESS.2021.3090202
    [13] 曹虎晨,姚善化,王仲根. 基于边界约束的煤矿井下尘雾图像去雾算法[J]. 工矿自动化,2022,48(6):139-146.

    CAO Huchen,YAO Shanhua,WANG Zhonggen. Defogging algorithm of underground coal mine dust and fog image based on boundary constraint[J]. Journal of Mine Automation,2022,48(6):139-146.
    [14] FENG Xiaomei,LI Jinjiang,HUA Zhen,et al. Low-light image enhancement based on multi-illumination estimation[J]. Applied Intelligence,2021(51):5111-5131.
    [15] MERIANOS I,MITIANOUDIS N. Multiple-exposure image fusion for HDR image synthesis using learned analysis transformations[J]. Journal of Imaging,2019,5(3). DOI: 10.3390/jimaging5030032.
    [16] CHEN Xiaobo,DU Hu,ZHAN Jinkai,et al. A self-adaptive multiple exposure image fusion method for highly reflective surface measurements[J]. Machines,2022(10). DOI: 10.3390/machines10111004.
    [17] 黄子蒙,徐望明,但愿. 基于对称亮度映射和虚拟多曝光融合的非均匀光照图像增强[J]. 液晶与显示,2022,37(12):1580-1589. doi: 10.37188/CJLCD.2022-0172

    HUANG Zimeng,XU Wangming,DAN Yuan. Non-uniform illumination image enhancement via symmetric brightness mapping and virtual multi-exposure fusion[J]. Chinese Journal of Liquid Crystals and Displays,2022,37(12):1580-1589. doi: 10.37188/CJLCD.2022-0172
    [18] WANG Xiaocheng,HU Ruimin,XU Xin. Single low-light image brightening using learning-based intensity mapping[J]. Neurocomputing,2022,508:315-323. doi: 10.1016/j.neucom.2022.08.042
    [19] 刘卫华,马碧燕. 基于图像全序列特征权重的多曝光图像融合方法[J]. 激光与光电子学进展,2022,59(8):289-299.

    LIU Weihua,MA Biyan. Multiexposure image fusion method based on feature weight of image sequence[J]. Laser & Optoelectronics Progress,2022,59(8):289-299.
    [20] GUO Xiaojie,LI Yu,LING Haibin. LIME:low-light image enhancement via illumination map estimation[J]. IEEE Transactions on Image Processing,2017,26(2):982-993. doi: 10.1109/TIP.2016.2639450
    [21] 张立亚,郝博南,孟庆勇,等. 基于HSV空间改进融合Retinex算法的井下图像增强方法[J]. 煤炭学报,2020,45(增刊1):532-540. doi: 10.13225/j.cnki.jccs.2020.0514

    ZHANG Liya,HAO Bonan,MENG Qingyong,et al. Method of image enhancement in coal mine based on improved retex fusion algorithm in HSV space[J]. Journal of China Coal Society,2020,45(S1):532-540. doi: 10.13225/j.cnki.jccs.2020.0514
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  172
  • HTML全文浏览量:  24
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-28
  • 修回日期:  2023-11-15
  • 网络出版日期:  2023-11-27

目录

    /

    返回文章
    返回