留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进YOLOv5的带式输送机大块煤检测

秦宇龙 程继明 任一个 王晓晴 赵青 安翠娟

秦宇龙,程继明,任一个,等. 基于改进YOLOv5的带式输送机大块煤检测[J]. 工矿自动化,2024,50(2):57-62, 71.  doi: 10.13272/j.issn.1671-251x.2023080096
引用本文: 秦宇龙,程继明,任一个,等. 基于改进YOLOv5的带式输送机大块煤检测[J]. 工矿自动化,2024,50(2):57-62, 71.  doi: 10.13272/j.issn.1671-251x.2023080096
QIN Yulong, CHENG Jiming, REN Yige, et al. Large coal detection for belt conveyors based on improved YOLOv5[J]. Journal of Mine Automation,2024,50(2):57-62, 71.  doi: 10.13272/j.issn.1671-251x.2023080096
Citation: QIN Yulong, CHENG Jiming, REN Yige, et al. Large coal detection for belt conveyors based on improved YOLOv5[J]. Journal of Mine Automation,2024,50(2):57-62, 71.  doi: 10.13272/j.issn.1671-251x.2023080096

基于改进YOLOv5的带式输送机大块煤检测

doi: 10.13272/j.issn.1671-251x.2023080096
基金项目: 国家自然科学基金资助项目(62273035)。
详细信息
    作者简介:

    秦宇龙(2000—),男,湖北荆门人,硕士研究生,研究方向为3D目标检测,E-mail:18810592978@163.com

  • 中图分类号: TD528.1

Large coal detection for belt conveyors based on improved YOLOv5

  • 摘要: 过大的煤块在带式输送机上运输时易造成煤流不畅、堵塞及堆煤,然而大块煤和普通煤块在外形和颜色上的差异较小,且煤块间存在遮挡和堆叠的情况,现有煤块检测方法对大块煤与普通煤块的区分不够精确,容易出现漏检或误检。针对上述问题,提出了一种改进YOLOv5模型,用于带式输送机大块煤检测。利用并行空洞卷积模块替换YOLOv5骨干网络中的部分普通卷积模块,扩大感受野,提升多尺度特征学习能力,从而更好地区分大块煤与普通煤块;在颈部网络中加入联合注意力模块,更好地融合上下文信息,提高对大块煤的定位能力。利用训练好的改进YOLOv5模型对摄像仪采集的实时输煤视频进行检测,根据大块煤的数量信息实时联动PLC示警。实验结果表明:相比于原始YOLOv5模型,改进YOLOv5模型在召回率和平均精度上分别提高了3.4%,2.0%;PLC可根据改进YOLOv5模型检测出的大块煤数量操作相应的指示灯和蜂鸣器进行示警;将改进YOLOv5模型应用于煤矿井下实际输煤视频中,对大块煤的检测精确率达97.0%,有效避免了漏检和误检现象。

     

  • 图  1  煤矿带式输送机大块煤检测原理

    Figure  1.  Detection principle of large coal blocks in coal mine belt conveyor

    图  2  改进YOLOv5模型

    Figure  2.  Improved YOLOv5 model

    图  3  并行空洞卷积模块结构

    Figure  3.  Structure of parallel dilated convolution module

    图  4  联合注意力模块结构

    Figure  4.  Structure of joint attention module

    图  5  PLC联动示警流程

    Figure  5.  Flow of PLC linkage alarm

    图  6  PLC联动示警结果

    Figure  6.  Results of PLC linkage alarm

    图  7  实际场景检测结果

    Figure  7.  Detection results of actual scene

    表  1  消融实验结果

    Table  1.   Results of ablation experiments

    并行空洞卷积模块联合注意力模块精确率/%召回率/%平均精度/%
    ××95.490.194.3
    ×95.592.795.2
    ×95.991.794.6
    95.693.596.3
    下载: 导出CSV

    表  2  不同模型性能对比结果

    Table  2.   Performance comparison results of different models

    模型 召回率/% 平均精度/% 帧速率/(帧·s−1
    Faster R−CNN[21] 89.4 92.8 28.6
    YOLOv5 90.1 94.3 58.4
    YOLOv5+SCConv[8] 90.5 94.2 60.2
    YOLOv5+GnBlock[10] 91.8 94.8 37.3
    YOLOv5+DCBS3+DCTR 93.5 96.3 39.2
    下载: 导出CSV

    表  3  不同模型检测精度对比结果

    Table  3.   Precision comparison results of different models

    模型精确率/%平均精度/%
    YOLOv588.390.9
    YOLOv5+SCConv93.994.3
    YOLOv5+GnBlock93.095.5
    YOLOv5+DCBS3+DCTR97.096.8
    下载: 导出CSV
  • [1] WANG Yuan,GUO Wei,ZHAO Shuanfeng,et al. A big coal block alarm detection method for scraper conveyor based on YOLO-BS[J]. Sensors,2022,22(23). DOI: 10.3390/s22239052.
    [2] 黄燕,胡俊. 一种煤炭智能检测辅助装置的研究与设计[J]. 中国检验检测,2023,31(2):23-24.

    HUANG Yan,HU Jun. Research and design of an intelligent auxiliary device for coal detection[J]. China Inspection Body & Laboratory,2023,31(2):23-24.
    [3] 张渤,谢金辰,张后斌. 矿井下输送带大块物体检测[J]. 煤炭技术,2021,40(4):154-156.

    ZHANG Bo,XIE Jinchen,ZHANG Houbin. Detection of large objects in transportation belt under mine[J]. Coal Technology, 2021,40(4):154-156.
    [4] 王卫东,张康辉,吕子奇,等. 基于深度学习的煤中异物机器视觉检测[J]. 矿业科学学报,2021,6(1):115-123.

    WANG Weidong,ZHANG Kanghui,LYU Ziqi,et al. Machine vision detection of foreign objects in coal using deep learning[J]. Journal of Mining Science and Technology,2021,6(1):115-123.
    [5] REDMON J,DIVVALA S,GIRSHICK R,et al. You only look once:unified,real-time object detection[C]. IEEE Conference on Computer Vision and Pattern Recognition,Las Vegas,2016:779-788.
    [6] 杜京义,郝乐,王悦阳,等. 一种煤矿井下输煤大块物检测方法[J]. 工矿自动化,2020,46(5):63-68.

    DU Jingyi,HAO Le,WANG Yueyang,et al. A detection method for large blocks in underground coal transportation[J]. Journal of Mine Automation,2020,46(5):63-68.
    [7] 叶鸥,窦晓熠,付燕,等. 融合轻量级网络和双重注意力机制的煤块检测方法[J]. 工矿自动化,2021,47(12):75-80.

    YE Ou,DOU Xiaoyi,FU Yan,et al. Coal block detection method integrating lightweight network and dual attention mechanism[J]. Industry and Mine Automation,2021,47(12):75-80.
    [8] 沈科,季亮,张袁浩,等. 基于改进YOLOv5s模型的煤矸目标检测[J]. 工矿自动化,2021,47(11):107-111,118.

    SHEN Ke,JI Liang,ZHANG Yuanhao,et al. Research on coal and gangue detection algorithm based on improved YOLOv5s model[J]. Industry and Mine Automation,2021,47(11):107-111,118.
    [9] 张旭辉,闫建星,张超,等. 基于改进YOLOv5s+DeepSORT的煤块行为异常识别[J]. 工矿自动化,2022,48(6):77-86,117.

    ZHANG Xuhui,YAN Jianxing,ZHANG Chao,et al. Coal block abnormal behavior identification based on improved YOLOv5s+DeepSORT[J]. Journal of Mine Automation,2022,48(6):77-86,117.
    [10] 高凯,董立红,邓凡. 基于递归门控卷积和上下文注意力的煤块检测算法[J]. 矿业研究与开发,2023,43(6):183-190.

    GAO Kai,DONG Lihong,DENG Fan. Coal block detection algorithm based on recursive gated convolution and contextual attention[J]. Mining Research and Development,2023,43(6):183-190.
    [11] 寇发荣,肖伟,何海洋,等. 基于改进YOLOv5的煤矿井下目标检测研究[J]. 电子与信息学报,2023,45(7):2642-2649.

    KOU Farong,XIAO Wei,HE Haiyang,et al. Research on target detection in underground coal mines based on improved YOLOv5[J]. Journal of Electronics & Information Technology,2023,45(7):2642-2649.
    [12] DENG Jun,XUAN Xiaojing,WANG Weifeng,et al. A review of research on object detection based on deep learning[J]. Journal of Physics Conference Series,2020,1684(1). DOI: 10.1088/1742-6596/1684/1/012028.
    [13] 樊红卫,刘金鹏,曹现刚,等. 低照度尘雾下煤、异物及输送带早期损伤多尺度目标智能检测方法[J/OL]. 煤炭学报:1-12[2023-08-22].https://doi.org/10.13225/j.cnki.jccs.2023.0707.

    FAN Hongwei,LIU Jinpeng,CAO Xiangang,et al. Multi-scale target intelligent detection method for coal,foreign object and early damage of conveyor belt surface under low illumination and dust fog[J/OL]. Journal of China Coal Society:1-12[2023-08-22]. https://doi.org/10.13225/j.cnki.jccs.2023.0707.
    [14] 卢才武,闫雪颂,刘力,等. 一种改进的无锚框式金属矿带式输送机异物检测方法[J]. 采矿技术,2022,22(1):150-154,162.

    LU Caiwu,YAN Xuesong,LIU Li,et al. An improved foreign object detection method for anchorless frame metal belt conveyor[J]. Mining Technology,2022,22(1):150-154,162.
    [15] 郭永存,张勇,李飞,等. 嵌入空洞卷积和批归一化模块的智能煤矸识别算法[J]. 矿业安全与环保,2022,49(3):45-50.

    GUO Yongcun,ZHANG Yong,LI Fei,et al. Intelligent coal and gangue identification algorithm embedded in dilated convolution and batch normalization module[J]. Mining Safety & Environmental Protection,2022,49(3):45-50.
    [16] WANG Qilong,WU Banggu,ZHU Pengfei,et al. ECA-Net:efficient channel attention for deep convolutional neural networks[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Seattle,2020:11531-11539.
    [17] 何乐,李忠伟,罗偲,等. 基于空洞卷积与双注意力机制的红外与可见光图像融合[J]. 红外技术,2023,45(7):732-738.

    HE Le,LI Zhongwei,LUO Cai,et al. Infrared and visible image fusion based on dilated convolution and dual attention mechanism[J]. Infrared Technology,2023,45(7):732-738.
    [18] 汤翔中,高丙朋. 融合注意力空洞卷积和Transformer的矿石图像分割[J]. 科学技术与工程,2023,23(16):6974-6982. doi: 10.12404/j.issn.1671-1815.2023.23.16.06974

    TANG Xiangzhong,GAO Bingpeng. Ore image segmentation based on attention hole convolution and transformer[J]. Science Technology and Engineering,2023,23(16):6974-6982. doi: 10.12404/j.issn.1671-1815.2023.23.16.06974
    [19] 王渊,郭卫,张传伟,等. 融合注意力机制和先验知识的刮板输送机异常煤块检测[J]. 西安科技大学学报,2023,43(1):192-200.

    WANG Yuan,GUO Wei,ZHANG Chuanwei,et al. Detection of abnormal coal block in scraper conveyor integrating attention mechanism and prior knowledge[J]. Journal of Xi'an University of Science and Technology,2023,43(1):192-200.
    [20] VASWANI A,SHAZEER N,PARMAR N,et al. Attention is all you need[C]. The 31st International Conference on Neural Information Processing Systems,Long Beach,2017:6000-6010.
    [21] REN Shaoqing,HE Kaiming,GIRSHICK R,et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149. doi: 10.1109/TPAMI.2016.2577031
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  680
  • HTML全文浏览量:  54
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-27
  • 修回日期:  2024-02-21
  • 网络出版日期:  2024-03-05

目录

    /

    返回文章
    返回