留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于生成对抗网络的带式输送机异物检测方法

张立亚

张立亚. 基于生成对抗网络的带式输送机异物检测方法[J]. 工矿自动化,2023,49(11):53-59.  doi: 10.13272/j.issn.1671-251x.2023080046
引用本文: 张立亚. 基于生成对抗网络的带式输送机异物检测方法[J]. 工矿自动化,2023,49(11):53-59.  doi: 10.13272/j.issn.1671-251x.2023080046
ZHANG Liya. Foreign object detection method for belt conveyor based on generative adversarial nets[J]. Journal of Mine Automation,2023,49(11):53-59.  doi: 10.13272/j.issn.1671-251x.2023080046
Citation: ZHANG Liya. Foreign object detection method for belt conveyor based on generative adversarial nets[J]. Journal of Mine Automation,2023,49(11):53-59.  doi: 10.13272/j.issn.1671-251x.2023080046

基于生成对抗网络的带式输送机异物检测方法

doi: 10.13272/j.issn.1671-251x.2023080046
基金项目: 国家自然科学基金青年基金项目(42201386);天地科技股份有限公司科技创新创业资金专项项目(2023-TD-ZD005-005,2022-2-TD-ZD001,2022-TD-ZD001)。
详细信息
    作者简介:

    张立亚(1985—),男,河北定州人,副研究员,博士研究生,现主要从事矿井视频分析及通信技术研究工作,E-mail:zhangliya@ccrise.cn

  • 中图分类号: TD634.1

Foreign object detection method for belt conveyor based on generative adversarial nets

  • 摘要: 煤矿井下胶带运输图像具有照度低、细节不清晰、背景干扰等特点,现有的带式输送机异物检测模型存在精度低、灵活性差、计算量大、优化空间存在差异等问题。针对上述问题,提出了一种基于生成对抗网络(GAN)的带式输送机异物检测方法。对胶带运输过程视频文件进行预处理,分类得到正常图像、异常图像,制作实验数据集对改进GANomaly模型进行训练,再通过训练好的模型进行带式输送机异物检测。在训练阶段,将不含异物的带式输送机图像作为输入;在测试阶段,将含有异物的带式输送机图像作为输入,得到的重构图像与输入网络的原图像作差,即可得到异物的具体位置。GANomaly模型轻量化改进方法:在GANomaly基础网络模型中加入深度可分离卷积残差模块,采用深度可分离卷积代替原有主干网络中的卷积操作,大幅降低了模型计算量,同时减少了参数的冗余计算,能够明显提高异物检测速度;通过合并多个批量归一化(BN)层,加快模型的收敛迭代速度,提高模型的泛化收敛能力,有效避免梯度消失。实验结果表明,改进GANomaly模型相较于传统GANomaly模型,在运行速度上提升了6.27%,评价指标F1分数、AUC、召回率(Recall)和平均精度均值(mAP)分别提升了19.05%,22.22%,15.00%,17.14%。

     

  • 图  1  基于GAN的带式输送机异物检测模型结构

    Figure  1.  Structure of foreign object detection model for belt conveyor based on generative adversarial nets

    图  2  GANomaly基础网络模块

    Figure  2.  GANomaly basic network model

    图  3  深度可分离卷积生成冗余特征图过程

    Figure  3.  The process of generating redundant feature maps through deep separable convolution

    图  4  深度可分离卷积残差模块

    Figure  4.  Depthwise separable convolution residual module

    图  5  数据集中部分图像

    Figure  5.  Partial images in the dataset

    图  6  无异物图像训练结果

    Figure  6.  Training results of images without foreign objects

    图  7  有异物图像训练结果

    Figure  7.  Training results of images with foreign objects

    图  8  有异物图像检测结果

    Figure  8.  Detection results of images with foreign objects

    图  9  模型平均运行时间对比

    Figure  9.  Comparison of average running time of the models

    图  10  模型评价指标对比

    Figure  10.  Comparison of model evaluation indicators

    表  1  合并前后性能比较

    Table  1.   Performance comparison before and after consolidation

    合并前/后 CPU前向时间/ms GPU前向时间/ms
    合并前175.1811.02
    合并后161.707.20
    性能提升/%7.6934.66
    下载: 导出CSV
  • [1] 王国法,赵国瑞,任怀伟. 智慧煤矿与智能化开采关键核心技术分析[J]. 煤炭学报,2019,44(1):34-41. doi: 10.13225/j.cnki.jccs.2018.5034

    WANG Guofa,ZHAO Guorui,REN Huaiwei. Analysis on key technologies of intelligent coal mine and intelligent mining[J]. Journal of China Coal Society,2019,44(1):34-41. doi: 10.13225/j.cnki.jccs.2018.5034
    [2] 鲍久圣,章全利,葛世荣,等. 煤矿井下无人化辅助运输系统关键基础研究及应用实践[J]. 煤炭学报,2023,48(2):1085-1098.

    BAO Jiusheng,ZHANG Quanli,GE Shirong,et al. Basic research and application practice of unmanned auxiliary transportation system in coal mine[J]. Journal of China Coal Society,2023,48(2):1085-1098.
    [3] 杨清翔,向秀华,孟斌,等. 一种煤矿带式输送机故障诊断方法[J]. 工矿自动化,2017,43(12):48-52. doi: 10.13272/j.issn.1671-251x.2017.12.010

    YANG Qingxiang,XIANG Xiuhua,MENG Bin,et al. A fault diagnosis method of coal mine belt conveyor[J]. Industry and Mine Automation,2017,43(12):48-52. doi: 10.13272/j.issn.1671-251x.2017.12.010
    [4] 孙继平,钱晓红. 煤矿事故与应急救援技术装备[J]. 工矿自动化,2016,42(10):1-5. doi: 10.13272/j.issn.1671-251x.2016.10.001

    SUN Jiping,QIAN Xiaohong. Coal mine accident and emergency rescue technology and equipment[J]. Industry and Mine Automation,2016,42(10):1-5. doi: 10.13272/j.issn.1671-251x.2016.10.001
    [5] 吕志强. 复杂环境下煤矿皮带运输异物图像识别研究[D]. 徐州:中国矿业大学,2020.

    LYU Zhiqiang. Research on image recognition of foreign bodies in the process of coal mine belt transportation in complex environment[D]. Xuzhou:China University of Mining and Technology,2020.
    [6] 程德强,徐进洋,寇旗旗,等. 融合残差信息轻量级网络的运煤皮带异物分类[J]. 煤炭学报,2022,47(3):1361-1369.

    CHENG Deqiang,XU Jinyang,KOU Qiqi,et al. Lightweight network based on residual information for foreign body classification on coal conveyor belt[J]. Journal of China Coal Society,2022,47(3):1361-1369.
    [7] 刘硕. 基于生成式对抗网络的异常检测研究[D]. 北京:北方工业大学,2022.

    LIU Shuo. Research on anomaly detection based on generative adversarial network[D]. Beijing:North China University of Technology,2022.
    [8] 任国强,韩洪勇,李成江,等. 基于Fast_YOLOv3算法的煤矿胶带运输异物检测[J]. 工矿自动化,2021,47(12):128-133.

    REN Guoqiang,HAN Hongyong,LI Chengjiang,et al. Foreign object detection in coal mine belt transportation based on Fast_YOLOv3 algorithm[J]. Industry and Mine Automation,2021,47(12):128-133.
    [9] 杜京义,陈瑞,郝乐,等. 煤矿带式输送机异物检测[J]. 工矿自动化,2021,47(8):77-83. doi: 10.13272/j.issn.1671-251x.2021040026

    DU Jingyi,CHEN Rui,HAO Le,et al. Coal mine belt conveyor foreign object detection[J]. Industry and Mine Automation,2021,47(8):77-83. doi: 10.13272/j.issn.1671-251x.2021040026
    [10] 吴守鹏. 基于机器视觉的运煤皮带异物识别方法研究[D]. 徐州:中国矿业大学,2019.

    WU Shoupeng. Research on detection method of foreign object on coal conveyor belt based on computer vision[D]. Xuzhou:China University of Mining and Technology,2019.
    [11] 卢学明,于在川,许升起. 基于深度生成模型的煤矿运输皮带异物检测[J]. 计算机系统应用,2022,31(5):358-363.

    LU Xueming,YU Zaichuan,XU Shengqi. Foreign object detection of coal mine belt conveyor based on deep generative model[J]. Computer Systems and Applications,2022,31(5):358-363.
    [12] 郜振国. 煤矿井下运输异物检测关键技术研究[D]. 徐州:中国矿业大学,2018.

    GAO Zhenguo. Study on key technologies of foreign object detection in the coal mine transportation[D]. Xuzhou:China University of Mining and Technology,2018.
    [13] 张海明. 基于深度学习的皮带机上的异物识别方法研究[D]. 马鞍山:安徽工业大学,2020.

    ZHANG Haiming. Research on method of identifying foreign object on belt conveyor based on deep learning[D]. Ma'anshan:Anhui University of Technology,2020.
    [14] 孔二伟,张亚邦,李佳悦,等. 面向煤矿井下低光照图像的增强方法[J]. 工矿自动化,2023,49(4):62-69,85.

    KONG Erwei,ZHANG Yabang,LI Jiayue,et al. An enhancement method for low light images in coal mines[J]. Journal of Mine Automation,2023,49(4):62-69,85.
    [15] 吴开兴,张琳,李丽宏. 煤矿井下雾尘图像清晰化算法[J]. 工矿自动化,2018,44(3):70-75. doi: 10.13272/j.issn.1671-251x.2017100078

    WU Kaixing,ZHANG Lin,LI Lihong. Sharpening algorithm for underground images with fog and dust[J]. Industry and Mine Automation,2018,44(3):70-75. doi: 10.13272/j.issn.1671-251x.2017100078
    [16] GOODFELLOW I J,POUGET-ABADIE J,MIRZA M,et al. Generative adversarial nets[EB/OL]. [2023-07-10]. https://arxiv.org/abs/1406.2661.
    [17] RADFORD A,METZ L,CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks[EB/OL]. [2023-07-10]. https://arxiv.org/abs/1511.06434v1.
    [18] AKCAY S,ATAPOUR-ABARGHOUEI A,BRECKON T P. GANomaly:semi-supervised anomaly detection via adversarial training[EB/OL]. [2023-07-10]. https://arxiv.org/abs/1805.06725.
    [19] 郑学召,童鑫,郭军,等. 煤矿智能监测与预警技术研究现状与发展趋势[J]. 工矿自动化,2020,46(6):35-40. doi: 10.13272/j.issn.1671-251x.17530

    ZHENG Xuezhao,TONG Xin,GUO Jun,et al. Research status and development trend of intelligent monitoring and early warning technology in coal mine[J]. Industry and Mine Automation,2020,46(6):35-40. doi: 10.13272/j.issn.1671-251x.17530
    [20] 李敬兆,秦晓伟,汪磊. 基于边云协同框架的煤矿井下实时视频处理系统[J]. 工矿自动化,2021,47(12):1-7. doi: 10.13272/j.issn.1671-251x.2021070023

    LI Jingzhao,QIN Xiaowei,WANG Lei. Real-time video processing system in coal mine based on edge-cloud collaborative framework[J]. Industry and Mine Automation,2021,47(12):1-7. doi: 10.13272/j.issn.1671-251x.2021070023
    [21] SIFRE L,MALLAT S. Rigid-motion scattering for texture classification[EB/OL]. [2023-07-10]. https://arxiv.org/abs/1403.1687.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  1234
  • HTML全文浏览量:  102
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-17
  • 修回日期:  2023-11-05
  • 网络出版日期:  2023-11-27

目录

    /

    返回文章
    返回