留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进KCF的多目标人员检测与动态跟踪方法

刘毅 庞大为 田煜

刘毅,庞大为,田煜. 基于改进KCF的多目标人员检测与动态跟踪方法[J]. 工矿自动化,2023,49(11):129-137.  doi: 10.13272/j.issn.1671-251x.2023080015
引用本文: 刘毅,庞大为,田煜. 基于改进KCF的多目标人员检测与动态跟踪方法[J]. 工矿自动化,2023,49(11):129-137.  doi: 10.13272/j.issn.1671-251x.2023080015
LIU Yi, PANG Dawei, TIAN Yu. Multi object personnel detection and dynamic tracking method based on improved KCF[J]. Journal of Mine Automation,2023,49(11):129-137.  doi: 10.13272/j.issn.1671-251x.2023080015
Citation: LIU Yi, PANG Dawei, TIAN Yu. Multi object personnel detection and dynamic tracking method based on improved KCF[J]. Journal of Mine Automation,2023,49(11):129-137.  doi: 10.13272/j.issn.1671-251x.2023080015

基于改进KCF的多目标人员检测与动态跟踪方法

doi: 10.13272/j.issn.1671-251x.2023080015
基金项目: 国家重点研发计划资助项目(2016YFC0801800);中央高校基本科研业务费资助项目(2021YJSJD24)。
详细信息
    作者简介:

    刘毅(1973—),男,山西临汾人,副教授,主要从事矿井智能监控研究工作,E-mail:liu_y@sina.com

    通讯作者:

    田煜(1999—),男,河南许昌人,硕士研究生,研究方向为井下信息处理,E-mail:tianyu17634722515@163.com

  • 中图分类号: TD67

Multi object personnel detection and dynamic tracking method based on improved KCF

  • 摘要: 针对煤矿巷道光照不足、目标尺度变化剧烈、目标容易被遮挡和矿灯干扰等因素,导致对于井下的目标检测和跟踪存在成功率和准确度低的问题,提出一种基于改进核相关滤波(KCF)算法的多目标人员检测与动态跟踪方法,为避免井下复杂环境中由于光照不均引起检测失败,在改进的KCF算法中引入SSD检测算法,以提升对多目标人员检测能力。① 读取待跟踪视频序列,使用经过井下数据集训练后的SSD算法检测图像中的目标,若没有发现目标则继续读取下一帧。② 将检测到的目标放入跟踪器中,对图像进行预处理,通过比较将所有的检测框按照设定的阈值进行打分,并根据分值从高到低依次排列,高分的检测结果直接输出,低分的检测结果用于滤除不良信息,以提升检测速度。③ 通过KCF跟踪预测目标M帧后清空跟踪器,再重新进行目标检测。通过检测算法和跟踪算法的叠加,保证对目标的持续跟踪能力。实验结果表明:① 该方法最后的损失值稳定在1.675附近,检测结果较为稳定。② 经过训练后的SSD算法识别精度较训练前的SSD算法识别精度提高了52.7%。③ 该方法对矿井人员检测成功率、跟踪准确率分别为87.9%,88.9%,均高于其他4种算法(KCF、CSRT、TLD及MIL)的检测成功率、跟踪准确率。④ 该方法在重叠阈值较低时具有较高成功率,直至重叠阈值大于0.8时,成功率大幅下降,这是因为矿井中环境多样,想要完全符合标注的框有一定难度。实际应用结果表明:在井下煤矿巷道光照不足、目标尺度变化剧烈、容易被遮挡和受矿灯干扰等复杂环境中,该方法具有较高的适用性。

     

  • 图  1  改进KCF算法框架

    Figure  1.  Framework of improved kernel correlation filter algorithm

    图  2  SSD网络结构

    Figure  2.  SSD structure

    图  3  SSD模型参数调整流程

    Figure  3.  The SSD model parameter adjustment process

    图  4  部分数据扩增结果

    Figure  4.  Results of amplification of some data

    图  5  SSD损失训练变化

    Figure  5.  SSD loss training changes

    图  6  矿井人员检测成功率

    Figure  6.  The success rate of mine personnel detection

    图  7  矿井人员跟踪准确率

    Figure  7.  The accuracy rate of the mine personnel in tracking

    图  8  不同算法帧速率对比

    Figure  8.  The FPS comparison between the different algorithms

    图  9  目标尺度剧烈变化下跟踪准确度

    Figure  9.  Tracking accuracy under drastic changes in object scale

    图  10  光照不均时目标跟踪准确度

    Figure  10.  Object tracking accuracy during uneven illumination

    图  11  矿灯直射时目标检测与跟踪准确度

    Figure  11.  The accuracy of object detection and tracking during direct mine light

    表  1  训练前后算法性能对比

    Table  1.   Algorithm performance comparison before and after training

    算法 识别精度/% 检测速度/(帧·s−1
    训练前SSD 32.6 10.91
    训练后SSD 85.3 11.31
    下载: 导出CSV

    表  2  5种算法性能对比

    Table  2.   Performance comparison of the 5 algorithms

    算法 成功率/% 准确率/% 检测速度/(帧·s−1
    KCF 42.6 41.1 38.49
    CSRT 29.8 27.5 24.28
    TLD 12.6 21.6 10.19
    MIL 48.7 52.3 13.21
    改进KCF算法 87.9 88.9 19.01
    下载: 导出CSV
  • [1] 孙继平. 煤矿信息化与自动化发展趋势[J]. 工矿自动化,2015,41(4):1-5.

    SUN Jiping. Development trend of coal mine informatization and automation[J]. Industry and Mine Automation,2015,41(4):1-5.
    [2] 程德强,钱建生,郭星歌,等. 煤矿安全生产视频AI识别关键技术研究综述[J]. 煤炭科学技术,2023,51(2):349-365.

    CHENG Deqiang,QIAN Jiansheng,GUO Xingge,et al. Review on key technologies of AI recognition for videos in coal mine[J]. Coal Science and Technology,2023,51(2):349-365.
    [3] 孙继平. 煤矿监控新技术与新装备[J]. 工矿自动化,2015,41(1):1-5.

    SUN Jiping. New technologies and new equipments of coal mine monitoring[J]. Industry and Mine Automation,2015,41(1):1-5.
    [4] 孙继平. 煤矿智能化与矿用5G[J]. 工矿自动化,2020,46(8):1-7.

    SUN Jiping. Coal mine intelligence and mine-used 5G[J]. Industry and Mine Automation,2020,46(8):1-7.
    [5] 程德强,冯晨晨,唐世轩,等. 多特征融合的行人检测算法[J]. 煤炭技术,2018,37(10):254-257.

    CHENG Deqiang,FENG Chenchen,TANG Shixuan,et al. Multi-features fusion pedestrian detection algorithm[J]. Coal Technology,2018,37(10):254-257.
    [6] 孟庆勇. 5G技术在煤矿井下应用架构探讨[J]. 工矿自动化,2020,46(7):28-33.

    Meng Qingyong. Probe on 5G architecture applied in coal mine underground[J]. Industry and Mine Automation,2020,46(7):28-33.
    [7] ZHANG Tianzhu,XU Changsheng,YANG M. Multi-task correlation particle filter for robust object tracking[C]. IEEE Conference on Computer Vision and Pattern Recognition(CVPR),Honolulu,2017:4819-4827.
    [8] 刘海仓. 基于稀疏表示的图像超分辨率与目标跟踪方法研究[D]. 长沙:湖南大学,2015.

    LIU Haicang. Reseach on image super resolution and object tracking based on sparse representation[D]. Changsha:Hunan University,2015.
    [9] 白中浩,朱磊,李智强. 基于多模型融合和重新检测的高精度鲁棒目标跟踪[J]. 仪器仪表学报,2019,40(9):132-141.

    BAI Zhonghao,ZHU Lei,LI Zhiqiang. High-accuracy and robust object tracking based on multi-model fusion and re-detection[J]. Chinese Journal of Scientific Instrument,2019,40(9):132-141.
    [10] 郝建华. 基于CamShift和粒子滤波的煤矿变电所人员目标跟踪算法研究[J]. 工矿自动化,2015,41(11):35-388.

    HAO Jianhua. Research of personnel tracking algorithm for coal mine substation based on CamShift and particle filter[J]. Industry and Mine Automation,2015,41(11):35-38.
    [11] 邵小强,李康乐,陈熙,等. 基于改进卡尔曼滤波和参数拟合的矿井TOA定位方法[J]. 煤炭学报,2019,44(5):1616-1624.

    SHAO Xiaoqiang,LI Kangle,CHEN Xi,et al. TOA positioning method of coalmine based on Kalman filter and parameter fitting[J]. Journal of China Coal Society,2019,44(5):1616-1624.
    [12] 孙继平,邵子佩,刘毅. 采煤机视频压缩感知跟踪方法[J]. 工矿自动化,2018,44(3):8-11.

    SUN Jiping,SHAO Zipei,LIU Yi. Visual tracking method of shearer based on compressive sensing[J]. Industry and Mine Automation,2018,44(3):8-11.
    [13] 贾澎涛,贾伟. 煤矿井下视频多目标轨迹跟踪算法研究[J]. 计算机工程与应用,2018,54(2):222-227. doi: 10.3778/j.issn.1002-8331.1607-0308

    JIA Pengtao,JIA Wei. Recherche algorithm on coal mine multi-target trajectory tracking[J]. Computer Engineering and Applications,2018,54(2):222-227. doi: 10.3778/j.issn.1002-8331.1607-0308
    [14] 陈伟,丁世飞,许新征. 基于YCbCr模型的巷道监控中矿工脸部图像识别[J]. 煤炭科学技术,2009,37(9):79-82,85.

    CHEN Wei,DING Shifei,XU Xinzheng. Miners' face images identification in monitor images of mine gateway based on YCbCr model[J]. Coal Science and Technology,2009,37(9):79-82,85.
    [15] HENRIQUES J F,CASEIRO R,MARTINS P,et al. High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2015. DOI: 10.1109/TPAMI.2014.2345390.
    [16] LIU Wei,ANGUELOV D,ERHAN D,et al. SSD:single shot multibox detector[J]. Springer,Cham,2016. DOI: 10.1007/978-3-319-46448-0_2.
    [17] KALAKE L,WAN Wanggen,HOU Li. Analysis based on recent deep learning approaches applied in real-time multi-object tracking:a review[J]. IEEE Access,2021(9):32650-32671. doi: 10.1109/ACCESS.2021.3060821
    [18] LUKEZIC A,VOJIR T,CEHOVIN Z L,et al. Discriminative correlation filter with channel and spatial reliability[J]. International Journal of Computer Vision,2018. DOI: 10.1007/s11263-017-1061-3.
    [19] ZHAO Shuaitong,YANG Xianzhao,CHEN Yang,et al. Research on pedestrian detection algorithms combined with lightweight networks[C]. International Conference on Algorithms,High Performance Computing and Artificial Intelligence,Guangzhou,2022:62-67.
    [20] CHEPLYGINA V,SRENSEN L,TAX D M,et al. Label stability in multiple instance learning[C]. Medical Image Computing and Computer-Assisted Intervention,Springer,Cham,2015. DOI: 10.1007/978-3-319-24553-9_66.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  971
  • HTML全文浏览量:  55
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-05
  • 修回日期:  2023-08-30
  • 网络出版日期:  2023-11-23

目录

    /

    返回文章
    返回