留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

井下电力电缆故障定位研究

商立群 张少强 荣相 刘江山 王越

商立群,张少强,荣相,等. 井下电力电缆故障定位研究[J]. 工矿自动化,2024,50(2):130-137.  doi: 10.13272/j.issn.1671-251x.2023080014
引用本文: 商立群,张少强,荣相,等. 井下电力电缆故障定位研究[J]. 工矿自动化,2024,50(2):130-137.  doi: 10.13272/j.issn.1671-251x.2023080014
SHANG Liqun, ZHANG Shaoqiang, RONG Xiang, et al. Research on fault positioning of underground power cable[J]. Journal of Mine Automation,2024,50(2):130-137.  doi: 10.13272/j.issn.1671-251x.2023080014
Citation: SHANG Liqun, ZHANG Shaoqiang, RONG Xiang, et al. Research on fault positioning of underground power cable[J]. Journal of Mine Automation,2024,50(2):130-137.  doi: 10.13272/j.issn.1671-251x.2023080014

井下电力电缆故障定位研究

doi: 10.13272/j.issn.1671-251x.2023080014
基金项目: 陕西省自然科学基础研究计划资助项目(2021JM-393);天地科技股份有限公司科技创新创业资金专项 ( 2023-TD-ZD001-006 )。
详细信息
    作者简介:

    商立群(1968—),男,河南济源人,教授,博士,主要研究方向为电力系统故障定位,E-mail:shanglq@ xust.edu.cn

    通讯作者:

    张少强(1995—),男, 河北邯郸人,硕士研究生,主要研究方向为井下电力电缆故障定位,E-mail: 895370713 @qq.com。

  • 中图分类号: TD714

Research on fault positioning of underground power cable

  • 摘要: 针对传统井下电力电缆故障定位方法依赖主观参数选择和抗噪性能较差,无法满足强噪声背景下井下电力电缆故障精确定位要求的问题,提出了一种基于樽海鞘群算法(SSA)优化变分模态分解(VMD)并结合改进型Teager能量算子(NTEO)的井下电力电缆故障定位方法。针对VMD在信号分解上存在的模态混叠、过分解和欠分解问题,采用SSA以模糊熵为适应度函数对VMD模态数K和惩罚因子$ \alpha $ 2个参数进行优化,得到更能反映故障特征信息的本征模态函数;采用NTEO对本征模态函数进行首波波头标定,得到首末两端的波头到达时刻,根据双端测距法得出故障位置。采用PSCAD/EMTDC进行井下电力电缆故障仿真,模拟具有强背景噪声的井下故障信号,结果表明:① 在理想电流信号中加入9 ,12 dB噪声后,SSA−VMD的信噪比最低,皮尔逊相关系数最大,说明SSA−VMD在最大程度降噪的同时,能很好地保留信号的特征信息。② 在不同过渡电阻下,SSA−VMD−NTEO的定位精度较高。③ 在不同故障相角下,SSA−VMD−NTEO在采样点上出现不同,但定位位置没有改变,依旧保持较高的定位精度。④ 在不同故障距离下,SSA−VMD−NTEO均能保证较高的定位精度。⑤ 在井下较大噪声和10 MHz采样频率下,SSA−VMD−NTEO较小波模极大值和VMD+NTEO 2种方法的定位精度具有明显优势。

     

  • 图  1  测试信号时域与频域波形

    Figure  1.  Testing signal in time-domain and frequency-domain

    图  2  VMD分解下信号中心频率分布

    Figure  2.  Signal center frequency distribution under VMD decomposition

    图  3  井下电力电缆工作模型

    Figure  3.  Underground power cable working model

    图  4  故障前后A相电流波形

    Figure  4.  Current waveform of phase A before and after fault

    图  5  M侧各参数FE对比

    Figure  5.  Comparison of fuzzy entropy (FE) of various parameters on M-side

    图  6  N侧各参数FE对比

    Figure  6.  Comparison of fuzzy entropy (FE) of various parameters on N-side

    图  7  NTEO双端瞬时能量谱

    Figure  7.  NTEO dual terminal instantaneous energy spectrum

    图  8  TEO双端瞬时能量谱

    Figure  8.  TEO dual terminal instantaneous energy spectrum

    图  9  测试函数时域波形

    Figure  9.  Testing function in time-domain

    图  10  各算法所得IMF分量的FE

    Figure  10.  Fuzzy entropy (FE) of IMF obtained by each algorithm

    表  1  不同算法的信号分解结果

    Table  1.   Filtering results of different algorithms

    算法 SNR/dB PCC
    9 dB噪声 12 dB噪声 9 dB噪声 12 dB噪声
    小波硬阈值 9.82 12.77 0.973 0.965
    小波软阈值 9.43 12.76 0.986 0.976
    VMD 9.33 12.76 0.990 0.989
    SSA−VMD 9.15 12.19 0.996 0.998
    下载: 导出CSV

    表  2  不同过渡电阻下故障定位结果

    Table  2.   Fault positioning results under different transition resistance

    过渡电阻/Ω 波头采样点 定位位置/m 定位误差/m
    M侧 N侧
    0.1 5 032 5 022 599.13 0.87
    10 5 032 5 022 599.13 0.87
    1 000 5 032 5 022 599.13 0.87
    下载: 导出CSV

    表  3  不同故障相角下故障定位结果

    Table  3.   Fault positioning results under different fault phase angles

    故障相角/(°) 波头采样点 定位位置/m 定位误差/m
    M侧 N侧
    0 5 033 5 023 599.13 0.87
    30 5 032 5 022 599.13 0.87
    60 5 029 5 019 599.13 0.87
    90 5 030 5 020 599.13 0.87
    下载: 导出CSV

    表  4  不同故障距离下故障定位结果

    Table  4.   Fault positioning results under different fault distances

    故障距离/m 波头采样点 定位位置/m 定位误差/m
    M侧 N侧
    100 5 011 5 051 103.57 3.57
    200 5 098 5 128 202.61 2.61
    300 5 042 5 062 301.74 1.74
    400 5 061 5 071 400.87 0.87
    500 5 059 5 059 500.00 0
    600 5 032 5 022 599.13 0.87
    700 5 067 5 047 698.26 1.74
    800 5 143 5 113 797.39 2.61
    900 5 125 5 185 896.43 3.57
    下载: 导出CSV

    表  5  不同方法的故障定位结果

    Table  5.   Fault positioning results of different methods

    故障位置/m方法定位位置/m定位误差/m
    400小波模极大值419.9619.96
    VMD+NTEO409.049.04
    SSA−VMD−NTEO400.870.87
    800小波模极大值837.0437.04
    VMD+NTEO817.2117.21
    SSA−VMD−NTEO797.392.61
    下载: 导出CSV
  • [1] 赵利. 融合小电流接地的矿山电网接地选线设计[J]. 煤炭工程,2019,51(9):48-51.

    ZHAO Li. Fault line selection of coalmine distribution network integrated small current neutral grounding system[J]. Coal Engineering,2019,51(9):48-51.
    [2] 周鲁天. 基于LSTM的矿山电网行波波头辨识[D]. 徐州:中国矿业大学,2020.

    ZHOU Lutian. Traveling wave front identification in mine power grid based on LSTM[D]. Xuzhou: China University of Mining and technology, 2020.
    [3] 罗超,耿蒲龙,曲兵妮,等. 基于小波包的矿井供电系统单相接地故障选线方法[J]. 工矿自动化,2018,44(2):68-74.

    LUO Chao,GENG Pulong,QU Bingni,et al. A line selection method for single phase ground fault in coal mine power supply system based on wavelet packet[J]. Industry and Mine Automation,2018,44(2):68-74.
    [4] 王国法,赵国瑞,任怀伟. 智慧煤矿与智能化开采关键核心技术分析[J]. 煤炭学报,2019,44(1):34-41.

    WANG Guofa,ZHAO Guorui,REN Huaiwei. Analysis on key technologies of intelligent coal mine and intelligent mining[J]. Journal of China Coal Society,2019,44(1):34-41.
    [5] 王升花. 煤矿供电系统电能质量综合评价[J]. 工矿自动化,2017,43(2):86-89.

    WANG Shenghua. Comprehensive evaluation of power quality of coal mine power supply system[J]. Industry and Mine Automation,2017,43(2):86-89.
    [6] 王国法,李世军,张金虎,等. 筑牢煤炭产业安全奠定能源安全基石[J]. 中国煤炭,2022,48(7):1-9.

    WANG Guofa,LI Shijun,ZHANG Jinhu,et al. Ensuring the safety of coal industry to lay the cornerstone of energy security[J]. China Coal,2022,48(7):1-9.
    [7] 王炜,王全金,尹力,等. 基于零模行波波速量化的高压输电线路双端故障定位方法[J]. 电力自动化设备,2022,42(12):165-170.

    WANG Wei,WANG Quanjin,YIN Li,et al. Two-terminal fault location method for high-voltage transmission line based on zero-mode traveling wave velocity quantization[J]. Electric Power Automation Equipment,2022,42(12):165-170.
    [8] 周鲁天,梁睿,彭楠,等. 基于ARIMA的矿山电网故障暂态行波波头辨识及故障测距[J]. 电力自动化设备,2020,40(6):177-188.

    ZHOU Lutian,LIANG Rui,PENG Nan,et al. Transient traveling wave front identification and fault location in mine power grid based on ARIMA[J]. Electric Power Automation Equipment,2020,40(6):177-188.
    [9] 郭秀才,刘冰冰,王力立. 基于小波包和CS−BP神经网络的矿用电力电缆故障诊断[J]. 计算机应用与软件,2021,38(9):105-110.

    GUO Xiucai,LIU Bingbing,WANG Lili. Fault diagnosis of mining power cable based on wavelet packet an CS-BP neural network[J]. Computer Applications and Software,2021,38(9):105-110.
    [10] 赵建文,孟旭辉. 数字孪生在煤矿电网中的应用研究[J]. 工矿自动化,2023,49(2):38-46.

    ZHAO Jianwen,MENG Xuhui. Research on the application of digital twin in coal mine power grid[J]. Journal of Mine Automation,2023,49(2):38-46.
    [11] 詹惠瑜,刘科研,盛万兴,等. 有源配电网故障诊断与定位方法综述及展望[J]. 高电压技术,2023,49(2):660-671.

    ZHAN Huiyu,LIU Keyan,SHENG Wanxing,et al. Review and prospects of fault diagnosis and location method in active distribution network[J]. High Voltage Engineering,2023,49(2):660-671.
    [12] 徐岩,胡紫琪,董浩然. 等. 基于灰色综合关联度的柔性直流配电网故障定位[J]. 太阳能学报,2023,44(4):324-331.

    XU Yan,HU Ziqi,DONG Haoran,et al. Fault location based on comprehensive grey relational degree for flexible DC distribution network[J]. Acta Energiae Solaris Sinica,2023,44(4):324-331.
    [13] 赵敏,尚鹏辉. 井下配电网电缆故障在线双端行波测距方法[J]. 工矿自动化,2016,42(11):50-55.

    ZHAO Min,SHANG Penghui. Online cable fault ranging method by double-end traveling wave for underground distribution network[J]. Industry and Mine Automation,2016,42(11):50-55.
    [14] 毕胜,耿蒲龙,张建花,等. 基于CEEMD与自相关阈值去噪的单相接地故障选线方法研究[J]. 煤炭工程,2022,54(7):153-158.

    BI Sheng,GENG Pulong,ZHANG Jianhua,et al. Line selection method for single phase ground fault based on CEEMD and autocorrelation threshold denoising[J]. Coal Engineering,2022,54(7):153-158.
    [15] 吴赛. 基于VMD−GST−TEO的煤矿井下输电线路故障定位[D]. 阜新:辽宁工程技术大学,2020.

    WU Sai. Fault location of underground transmission line based on VMD-GST-TEO in coal mine [D]. Fuxin:Liaoning Technical University,2020.
    [16] 杜政奇,王敬华,张新慧. 基于参数优化VMD和能量相似度的配电网故障区段定位方法[J]. 电子测量技术,2022,45(8):95-101.

    DU Zhengqi,WANG Jinghua,ZHANG Xinhui. Fault section location in distribution network based on parameter optimization VMD and energy similarity[J]. Electronic Measurement Technology,2022,45(8):95-101.
    [17] 荣相. 矿用变频器性能测试系统设计[J]. 工矿自动化,2021,47(5):9-15.

    RONG Xiang. Design of mine inverter performance test system[J]. Idustry and Mine Automation,2021,47(5):9-15.
    [18] 张伟,李军霞,陈维望. 基于蝙蝠算法优化VMD参数的滚动轴承复合故障分离方法[J]. 振动与冲击,2022,41(20):133-141.

    ZHANG Wei,LI Junxia,CHEN Weiwang. A compound fault feature separation method of rolling bearings based on VMD optimized by the bat algorithm[J]. Journal of Vibration and Shock,2022,41(20):133-141.
    [19] 罗亦泳,姚宜斌,黄城,等. 基于改进VMD的变形特征提取与分析[J]. 武汉大学学报(信息科学版),2020,45(4):612-619.

    LUO Yiyong,YAO Yibin,HUANG Cheng,et al. Deformation feature extraction and analysis based on improved VMD[J]. Geomatics and Information Science of Wuhan University,2020,45(4):612-619.
    [20] 任学平,李攀,王朝阁,等. 基于改进VMD与包络导数能量算子的滚动轴承早期故障诊断[J]. 振动与冲击,2018,37(15):6-13.

    REN Xueping,LI Pan,WANG Chaoge,et al. Rolling bearing early fault diagnosis based on improved VMD and envelope derivative operator[J]. Journal of Vibration and Shock,2018,37(15):6-13.
    [21] 李一鸣. 基于小波包多尺度模糊熵和加权KL散度的煤岩智能识别[J]. 工矿自动化,2023,49(4):92-98.

    LI Yiming. Intelligent recognition of coal and rock based on wavelet packet multi-scale fuzzy entropy and weighted KL divergence[J]. Journal of Mine Automation,2023,49(4):92-98.
    [22] SEYEDALI M,AMIR H G,SEYEDEH Z M,et al. Salp swarm algorithm:A bio-inspired optimizer for engineering design problems[J]. Advances in Engineering Software,2017,114(6):163-191.
    [23] 吴传龙,陈伟,刘晓文,等. 基于特征融合的提升机逆变器故障诊断[J]. 工矿自动化,2021,47(5):46-51.

    WU Chuanlong,CHEN Wei,LIU Xiaowen,et al. Feature fusion based fault diagnosis of hoist inverter[J]. Industry and Mine Automation,2021,47(5):46-51.
    [24] 范新桥,朱永利,卢伟甫. 基于EMD−TEO的输电线路行波故障定位[J]. 电力系统保护与控制,2012,40(9):8-12,17.

    FAN Xinqiao,ZHU Yongli,LU Weifu. Traveling wave based fault location for transmission lines based on EMD-TEO[J]. Power System Protection and Control,2012,40(9):8-12,17.
    [25] 骆玮,王恒,王磊,等. 基于设备信息交互的小电流接地故障定位[J]. 电力系统保护与控制,2019,47(4):73-82.

    LUO Wei,WANG Heng,WANG Lei,et al. Faulted line location method for distribution systems based on the equipment's information exchange[J]. Power System Protection and Control,2019,47(4):73-82.
    [26] 郭威, 史运涛. 基于空间域图像生成和混合卷积神经网络的配电网故障选线方法[J/OL]. 电网技术: 1-14.[2023-08-04]. http://kns.cnki.net/kcms/detail/11.2410.tm.20230310.1705.003.html.

    GUO Wei, SHI Yuntao. Fault line selection for distribution network based on spatial domain image generation and hybrid convolutional neural network[J/OL]. Power System Technology: 1-14[2023-08-04]. http://kns.cnki.net/kcms/detail/11.2410.tm.20230310.1705.003.html.
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  127
  • HTML全文浏览量:  22
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-04
  • 修回日期:  2024-01-28
  • 网络出版日期:  2024-03-01

目录

    /

    返回文章
    返回