留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于SD−YOLOv5s−4L的煤矿井下无人驾驶电机车多目标检测

赵伟 王爽 赵东洋

赵伟,王爽,赵东洋. 基于SD−YOLOv5s−4L的煤矿井下无人驾驶电机车多目标检测[J]. 工矿自动化,2023,49(11):121-128.  doi: 10.13272/j.issn.1671-251x.2023070100
引用本文: 赵伟,王爽,赵东洋. 基于SD−YOLOv5s−4L的煤矿井下无人驾驶电机车多目标检测[J]. 工矿自动化,2023,49(11):121-128.  doi: 10.13272/j.issn.1671-251x.2023070100
ZHAO Wei, WANG Shuang, ZHAO Dongyang. Multi object detection of underground unmanned electric locomotives in coal mines based on SD-YOLOv5s-4L[J]. Journal of Mine Automation,2023,49(11):121-128.  doi: 10.13272/j.issn.1671-251x.2023070100
Citation: ZHAO Wei, WANG Shuang, ZHAO Dongyang. Multi object detection of underground unmanned electric locomotives in coal mines based on SD-YOLOv5s-4L[J]. Journal of Mine Automation,2023,49(11):121-128.  doi: 10.13272/j.issn.1671-251x.2023070100

基于SD−YOLOv5s−4L的煤矿井下无人驾驶电机车多目标检测

doi: 10.13272/j.issn.1671-251x.2023070100
基金项目: 国家自然科学基金项目(52274152);安徽省高校杰出青年科研项目(2022AH020056)。
详细信息
    作者简介:

    赵伟(2000—),男,安徽桐城人,硕士研究生,研究方向为矿山智能化装备与技术,E-mail:zhaow201105@126.com

    通讯作者:

    王爽(1991—),女,安徽马鞍山人,副教授,博士,研究方向为煤矿机器人,E-mail:chk0519@126.com

  • 中图分类号: TD64

Multi object detection of underground unmanned electric locomotives in coal mines based on SD-YOLOv5s-4L

  • 摘要: 为解决煤矿井下无人驾驶电机车由于光照不均、高噪声等复杂环境因素导致的多目标检测精度低及小目标识别困难问题,提出一种基于SD−YOLOv5s−4L的煤矿井下无人驾驶电机车多目标检测模型。在YOLOv5s基础上进行以下改进,构建SD−YOLOv5s−4L网络模型:引入SIoU损失函数来解决真实框与预测框方向不匹配的问题,使得模型可以更好地学习目标的位置信息;在YOLOv5s头部引入解耦头,增强网络模型的特征融合与定位准确性,使得模型可以快速捕捉目标的多尺度特征;引入小目标检测层,将原三尺度检测层增至4层,以增强模型对小目标的特征提取能力和检测精度。在矿井电机车多目标检测数据集上进行实验,结果表明:SD−YOLOv5s−4L网络模型对各类目标的平均精度均值(mAP)为97.9%,对小目标的平均检测精度(AP)为98.9%,较YOLOv5s网络模型分别提升了5.2%与9.8%;与YOLOv7,YOLOv8等其他网络模型相比,SD−YOLOv5s−4L网络模型综合检测性能最佳,可为实现矿井电机车无人驾驶提供技术支撑。

     

  • 图  1  YOLOv5s网络结构

    Figure  1.  YOLOv5s network structure

    图  2  解耦头结构

    Figure  2.  Decoupled head structure

    图  3  SD−YOLOv5s−4L网络结构

    Figure  3.  SD-YOLOv5s-4L network structure

    图  4  部分数据集图像

    Figure  4.  Partial dataset images

    图  5  不同网络模型检测效果对比

    Figure  5.  Comparison of detection results of different algorithms

    图  6  各组消融实验mAP对比

    Figure  6.  Comparison of mAP in each ablation experiment

    图  7  不同网络模型的mAP对比

    Figure  7.  Comparison of mAP for different network models

    表  1  实验环境

    Table  1.   Experimental environment

    实验环境 参数
    操作系统 Ubuntu 18.04
    CPU Intel(R) Xeon(R) Platinum 8350C CPU@2.6 GHz
    GPU RTX 3090(24 GiB)
    深度学习框架 PyTorch 1.9.0
    编程语言 Python 3.8
    CUDA 11.1
    下载: 导出CSV

    表  2  超参数设置

    Table  2.   Hyper-parameter setting

    参数名称 数值
    batch-size 32
    momentum 0.937
    decay 0.0005
    learning rate 0.01
    epochs 301
    下载: 导出CSV

    表  3  消融实验结果

    Table  3.   Ablation experiment results

    实验网络模型APmAP
    personsignal lightstone
    1YOLOv5s0.9450.9450.8910.927
    2YOLOv5s+ SIoU0.9460.9420.9310.940
    3YOLOv5s+解耦头0.9560.9500.9230.943
    4YOLOv5s+小目标检测层0.9720.9590.9710.968
    5YOLOv5s+SIoU+
    小目标检测层+解耦头
    0.9800.9670.9890.979
    下载: 导出CSV

    表  4  对比实验结果

    Table  4.   Comparative experimental results

    实验网络模型APF1mAP
    personsignal lightstone
    1YOLOv5n0.9000.9130.9230.890.912
    2YOLOv5m0.9650.9600.9350.930.954
    3YOLOv5s0.9450.9450.8910.910.927
    4YOLOv70.9670.9500.9210.940.946
    5YOLOv80.9480.9260.9850.920.953
    6SD−YOLOv5s−4L0.9800.9670.9890.960.979
    下载: 导出CSV
  • [1] 王国法,赵国瑞,任怀伟. 智慧煤矿与智能化开采关键核心技术分析[J]. 煤炭学报,2019,44(1):34-41. doi: 10.13225/j.cnki.jccs.2018.5034

    WANG Guofa,ZHAO Guorui,REN Huaiwei. Analysis on key technologies of intelligent coal mine and intelligent mining[J]. Journal of China Coal Society,2019,44(1):34-41. doi: 10.13225/j.cnki.jccs.2018.5034
    [2] 孙继平. 煤矿智能化与矿用5G[J]. 工矿自动化,2020,46(8):1-7.

    SUN Jiping. Coal mine intelligence and mine-used 5G[J]. Industry and Mine Automation,2020,46(8):1-7.
    [3] 于骞翔,张元生. 井下电机车轨道障碍物图像处理方法的智能识别技术[J]. 金属矿山,2021(8):150-157. doi: 10.19614/j.cnki.jsks.202108024

    YU Qianxiang,ZHANG Yuansheng. Track obstacle intelligent recognition technology of mine electric locomotive based on image processing[J]. Metal Mine,2021(8):150-157. doi: 10.19614/j.cnki.jsks.202108024
    [4] 韩江洪,卫星,陆阳,等. 煤矿井下机车无人驾驶系统关键技术[J]. 煤炭学报,2020,45(6):2104-2115.

    HAN Jianghong,WEI Xing,LU Yang,et al. Driverless technology of underground locomotive in coal mine[J]. Journal of China Coal Society,2020,45(6):2104-2115.
    [5] 胡青松,孟春蕾,李世银,等. 矿井无人驾驶环境感知技术研究现状及展望[J]. 工矿自动化,2023,49(6):128-140. doi: 10.13272/j.issn.1671-251x.18115

    HU Qingsong,MENG Chunlei,LI Shiyin,et al. Research status and prospects of perception technology for unmanned mining vehicle driving environment[J]. Journal of Mine Automation,2023,49(6):128-140. doi: 10.13272/j.issn.1671-251x.18115
    [6] 李程,车文刚,高盛祥. 一种用于航拍图像的目标检测算法[J]. 山东大学学报(理学版),2023,58(9):59-70.

    LI Cheng,CHE Wengang,GAO Shengxiang. A object detection algorithm for aerial images[J]. Journal of Shandong University(Natural Science),2023,58(9):59-70.
    [7] GIRSHICK R,DONAHUE J,DARRELL T,et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]. 2014 IEEE Conference on Computer Vision and Pattern Recognition,Columbus,2014:580-587.
    [8] HE Kaiming,GKIOXARI G,DOLLAR P,et al. Mask R-CNN[C]. 2017 IEEE International Conference on Computer Vision,Venice,2017:2980-2988.
    [9] REDMON J,DIVVALA S,GIRSHICK R,et al. You only look once:unified,real-time object detection[C]. IEEE Conference on Computer Vision and Pattern Recognition,Las Vegas,2016:779-788.
    [10] LIU Wei,ANGUELOV D,ERHAN D,et al. SSD:single shot multi-box Detector[C]. European Conference on Computer Vision,2016:21-37.
    [11] 李伟山,卫晨,王琳. 改进的Faster RCNN煤矿井下行人检测算法[J]. 计算机工程与应用,2019,55(4):200-207. doi: 10.3778/j.issn.1002-8331.1711-0282

    LI Weishan,WEI Chen,WANG Lin. Improved faster RCNN approach for pedestrian detection in underground coal mine[J]. Computer Engineering and Applications,2019,55(4):200-207. doi: 10.3778/j.issn.1002-8331.1711-0282
    [12] HE Deqiang,LI Kai,CHEN Yanjun,et al. Obstacle detection in dangerous railway track areas by a convolutional neural network[J]. Measurement Science and Technology,2021,32(10). DOI: 10.1088/1361-6501/abfdde.
    [13] HE Kaiming,ZHANG Xiangyu,REN Shaoqing,et al. Identity mappings in deep residual networks[C]. European Conference on Computer Vision,2016:630-645.
    [14] 郝帅,张旭,马旭,等. 基于CBAM−YOLOv5的煤矿输送带异物检测[J]. 煤炭学报,2022,47(11):4147-4156.

    HAO Shuai,ZHANG Xu,MA Xu,et al. Foreign object detection in coal mine conveyor belt based on CBAM-YOLOv5[J]. Journal of China Coal Society,2022,47(11):4147-4156.
    [15] 郑玉珩,黄德启. 改进MobileViT与YOLOv4的轻量化车辆检测网络[J]. 电子测量技术,2023,46(2):175-183.

    ZHENG Yuheng,HUANG Deqi. Lightweight vehicle detection network based on MobileViT and YOLOv4[J]. Electronic Measurement Technology,2023,46(2):175-183.
    [16] 杨艺,付泽峰,高有进,等. 基于深度神经网络的综采工作面视频目标检测[J]. 工矿自动化,2022,48(8):33-42.

    YANG Yi,FU Zefeng,GAO Youjin,et al. Video object detection of the fully mechanized working face based on deep neural network[J]. Journal of Mine Automation,2022,48(8):33-42.
    [17] 葛淑伟,张永茜,秦嘉欣,等. 基于优化SSD−MobileNetV2的煤矿井下锚孔检测方法[J]. 采矿与岩层控制工程学报,2023,5(2):66-74.

    GE Shuwei,ZHANG Yongqian,QIN Jiaxin,et al. Rock bolt borehole detection method for underground coal mines based on optimized SSD-MobileNetV2[J]. Journal of Mining and Strata Control Engineering,2023,5(2):66-74.
    [18] GEVORGYAN Z. SIoU loss:more powerful learning for bounding box regression[EB/OL]. [2023-05-12]. https://arxiv.org/abs/2205.12740.
    [19] ZHENG Zhaohui,WANG Ping,REN Dongwei,et al. Enhancing geometric factors in model learning and inference for object detection and instance segmentation[J]. IEEE Transactions on Cybernetics,2021,52(8):8574-8586.
    [20] WU Yue,CHEN Yinpeng,YUAN Lu,et al. Rethinking classification and localization for object detection[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition,Seattle,2020:10183-10192.
    [21] LIN T-Y,DOLLAR P,GIRSHICK R B,et al. Feature pyramid networks for object detection[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition,Honolulu,2017:936-944.
    [22] LIU Shu,QI Lu,QIN Haifang,et al. Path aggregation network for instance segmentation[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Salt Lake City,2018:8759-8768.
    [23] KARAKAYA M,CELEBI M F,GOK A E,et al. Discovery of agricultural diseases by deep learning and object detection[J]. Environmental Engineering and Management Journal,2022,21(1):163-173. doi: 10.30638/eemj.2022.016
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  1261
  • HTML全文浏览量:  28
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-28
  • 修回日期:  2023-11-17
  • 网络出版日期:  2023-11-27

目录

    /

    返回文章
    返回