留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于电磁波的煤岩识别技术研究进展

柳圆 司垒 王忠宾 魏东 顾进恒

柳圆,司垒,王忠宾,等. 基于电磁波的煤岩识别技术研究进展[J]. 工矿自动化,2024,50(1):42-48, 65.  doi: 10.13272/j.issn.1671-251x.2023070095
引用本文: 柳圆,司垒,王忠宾,等. 基于电磁波的煤岩识别技术研究进展[J]. 工矿自动化,2024,50(1):42-48, 65.  doi: 10.13272/j.issn.1671-251x.2023070095
LIU Yuan, SI Lei, WANG Zhongbin, et al. Research progress on coal rock recognition technology based on electromagnetic waves[J]. Journal of Mine Automation,2024,50(1):42-48, 65.  doi: 10.13272/j.issn.1671-251x.2023070095
Citation: LIU Yuan, SI Lei, WANG Zhongbin, et al. Research progress on coal rock recognition technology based on electromagnetic waves[J]. Journal of Mine Automation,2024,50(1):42-48, 65.  doi: 10.13272/j.issn.1671-251x.2023070095

基于电磁波的煤岩识别技术研究进展

doi: 10.13272/j.issn.1671-251x.2023070095
基金项目: 国家自然科学基金面上项目(52014277);江苏省自然科学基金面上项目(BK20211245);江苏高校优势学科建设工程项目(苏政办发〔2018〕87号)。
详细信息
    作者简介:

    柳圆(1997—),男,河南信阳人,硕士研究生,研究方向为煤岩识别,E-mail:897383507@qq.com

    通讯作者:

    司垒(1987—),男,江苏徐州人,副教授,博士,研究方向为煤矿智能化开采,E-mail:sileicool@163.com

  • 中图分类号: TD823

Research progress on coal rock recognition technology based on electromagnetic waves

  • 摘要: 将电磁波应用于煤岩识别中,可有效提高煤岩界面分辨能力。结合煤岩界面模型,阐述了运用电磁波技术进行煤岩识别的原理;介绍了γ射线法、雷达探测法、太赫兹信号法、电子共振法、X射线法和红外热成像法6种具体的煤岩识别方法,分析了各方法的原理,对各方法的优缺点及煤矿井下适用性进行了对比,并结合实际工业应用分析了各方法的研究现状。γ射线法在探测距离上具有显著优势,但存在放射性问题,基本被淘汰;雷达探测法具有识别准确的优点,但由于其信号衰减严重,探测距离短,目前一般应用于薄煤层测厚;太赫兹信号法探测距离短,只有在井下环境组成稳定时才能应用;电子共振法信号衰减严重,探测距离较短且难度较大,所以目前矿井基本摒弃;X射线法穿透性强,成像较清晰,但危害性极大;红外热成像法中,主动红外激励法需耗费大量时间对煤岩进行激励,且在处于高瓦斯的矿井环境中,存在极大的安全隐患;截割闪温法虽耗时较短,但对于截齿多、排布复杂的情况很难实现有效的煤岩识别。指出电磁波回波信息决定着电磁波煤岩识别的准确性,后续应对其进行深层次挖掘。

     

  • 图  1  煤岩界面模型

    Figure  1.  Coal and rock interface model

    图  2  γ射线法原理

    Figure  2.  Principle of γ-ray method

    图  3  雷达探测法原理

    Figure  3.  Principles of radar detection method

    图  4  太赫兹信号法原理

    Figure  4.  Principle of Terahertz signal method

    图  5  电子共振法原理

    Figure  5.  Principle of electron resonance method

    图  6  X射线法原理

    Figure  6.  Principle of X-ray method

    图  7  红外热成像法原理

    Figure  7.  Principles of infrared thermal imaging

    表  1  6种基于电磁波的煤岩识别方法综合对比

    Table  1.   Comprehensive comparison of six coal and rock recognition methods based on electromagnetic wave

    识别方法优点缺点煤矿井下适用性
    γ射线法探测距离较远对放射性元素含量有要求煤层放射性达标
    雷达探测法识别准确信号衰减严重,探测距离较短介质电性差异明显
    太赫兹信号法透射非极性介质多,可同时获取煤岩的多个光学参数探测距离较短,对环境要求较高矿井环境组成稳定
    电子共振法介质共振吸收现象明显信号衰减严重,探测距离较短目前矿井基本摒弃
    X射线法穿透性强,成像较清晰探测距离较短,危害性较大一般用于煤矸分选
    红外热成像法对井下复杂环境适用性强耗时长矿井瓦斯含量低,截齿少且排布较简单
    下载: 导出CSV
  • [1] 杨元. 我国煤矿井下复杂地质条件下钻探技术与装备进展[J]. 内蒙古煤炭经济,2021(24):195-197.

    YANG Yuan. Progress of drilling technology and equipment under complex geological conditions in coal mines in China[J]. Inner Mongolia Coal Economy,2021(24):195-197.
    [2] 石智军,刘建林,李泉新. 我国煤矿区钻进技术装备发展与应用[J]. 煤炭科学技术,2018,46(4):1-6.

    SHI Zhijun,LIU Jianlin,LI Quanxin. Development and application of drilling technique and equipment in coal mining area of China[J]. Coal Science and Technology,2018,46(4):1-6.
    [3] 林柏泉,李庆钊,杨威,等. 基于千米钻机的“三软”煤层瓦斯治理技术及应用[J]. 煤炭学报,2011,36(12):1968-1973.

    LIN Baiquan,LI Qingzhao,YANG Wei,et al. Gas control technology and applications for the three-soft coal seam based on VLD-1000 drilling systems[J]. Journal of China Coal Society,2011,36(12):1968-1973.
    [4] 张世阔,曹思华. 复杂地质条件下矿井安全高效开采地质保障技术[J]. 煤矿安全,2010,41(4):70-73.

    ZHANG Shikuo,CAO Sihua. The technology of mine safety and efficient mining geology assurance under complicated geological conditions[J]. Safety in Coal Mines,2010,41(4):70-73.
    [5] 张强,张润鑫,刘峻铭,等. 煤矿智能化开采煤岩识别技术综述[J]. 煤炭科学技术,2022,50(2):1-26.

    ZHANG Qiang,ZHANG Runxin,LIU Junming,et al. Review on coal and rock identification technology for intelligent mining in coal mines[J]. Coal Science and Technology,2022,50(2):1-26.
    [6] 许会,陈艳玲. 微波成像技术及其算法综述[J]. 无损检测,2012,34(10):67-71,82.

    XU Hui,CHEN Yanling. Overview of the technology and algorithm of microwave imaging[J]. Nondestructive Testing,2012,34(10):67-71,82.
    [7] 李海英,杨汝良. 超宽带雷达的发展、现状及应用[J]. 遥感技术与应用,2001(3):178-183.

    LI Haiying,YANG Ruliang. Development,state-of-the-art and applications of ultra-wideband radar[J]. Remote Sensing Technology and Application,2001(3):178-183.
    [8] 开滦煤炭科学研究所. 低能γ射线测灰仪[J]. 煤炭科学技术,1977,5(7):26-28.

    Kailuan Coal Science Research Institute. Low energy gamma ray ash analyzer[J]. Coal Science and Technology,1977,5(7):26-28.
    [9] 纪钢,李冬辉,吴学胜. 天然γ射线穿过煤的规律性研究[J]. 煤炭学报,1994,19(1):65-70.

    JI Gang,LI Donghui,WU Xuesheng. Study of rules of natural γ-rays passing through coal seam[J]. Journal of China Coal Society,1994,19(1):65-70.
    [10] 韩成石,董长双,周西军,等. 煤和矸石γ–射线分选系统的研究[J]. 山西矿业学院学报,1997,15(2):45-49.

    HAN Chengshi,DONG Changshuang,ZHOU Xijun,et al. Research on a system of separating coal from stone by γ-ray[J]. Shanxi Mining Institute Learned Journal,1997,15(2):45-49.
    [11] 王增才,孟惠荣. 支架顶梁对γ射线方法测量顶煤厚度影响研究[J]. 中国矿业大学学报,2002,31(3):323-326.

    WANG Zengcai,MENG Huirong. Influence of canopy of hydraulic support upon measurting thickness of coal seam by natural gamma ray[J]. Journal of China University of Mining & Technology,2002,31(3):323-326.
    [12] 张宁波. 综放开采煤矸自然射线辐射规律及识别研究[D]. 徐州:中国矿业大学,2015.

    ZHANG Ningbo. Detection and radiation law of natural gamma ray from coal and roof-rock in the fully mechanized top coal caving mining[D]. Xuzhou:China University of Mining and Technology,2015.
    [13] 赵明鑫. 综放煤矸放落的环境特征及自动识别的影响因素研究[D]. 徐州:中国矿业大学,2020.

    ZHAO Mingxin. Study on drawing environmental characteristics and influence factors of coal-gangue automatic identification in fully mechanized top coal caving ming[D]. Xuzhou:China University of Mining and Technology,2020.
    [14] 杨增福,张海军,蒲平武. 基于自然γ射线探测原理的煤层厚度测量精度优化方法研究[J]. 煤炭科学技术,2021,49(增刊2):287-291.

    YANG Zengfu,ZHANG Haijun,PU Pingwu. Optimization method of coal seam thickness measurement accuracy based on natural γ-ray detection principle[J]. Coal Science and Technology,2021,49(S2):287-291.
    [15] ELLERBRUCH D A,ADAMS J W. Microwave measurement of coal layer thickness[R/OL]. [2023-05-12]. https://nvlpubs.nist.gov/nistpubs/Legacy/IR/nbsir74-387.pdf.
    [16] ELLERBRUCH D A,BELSHER D R. Electromagnetic technique of measuring coal layer thickness[J]. IEEE Transactions on Geoscience Electronics,1978,16(2):126-133. doi: 10.1109/TGE.1978.294575
    [17] DANIELS D J. Short pulse radar for stratified lossy dielectric layer measurement[J]. IEE Proceedings F(Communications,Radar and Signal Processing),1980,127(5):384-388.
    [18] CHUFO R L,JOHNSON W J. A radar coal thickness sensor[C]. IEEE Industry Applications Society Annual Meeting,Dearborn,1991:1182-1191.
    [19] MOWREY G L,GANOE C,MONAGHAN W D. A radar-based highwall rib-thickness monitoring system[J]. Fuel and Energy Abstracts,1997,38(3):194.
    [20] RALSTON J C,HAINSWORTH D W,MCPHEE R J. Application of ground penetrating radar for coal thickness measurement[C]. IEEE Region 10 Annual Conference,Brisbane,1997:835-838.
    [21] STRANGE A D,CHANDRAN V,RALSTON J C. Coal seam thickness estimation using GPR and higher order statistics - the near-surface case[C]. The Eighth International Symposium on Signal Processing and Its Applications,Sydney,2005:855-858.
    [22] 王昕,丁恩杰,胡克想,等. 煤岩散射特性对探地雷达探测煤岩界面的影响[J]. 中国矿业大学学报,2016,45(1):34-41.

    WANG Xin,DING Enjie,HU Kexiang,et al. Effects of coal-rock scattering characteristics on the GPR detection of coal-rock interface[J]. Journal of China University of Mining & Technology,2016,45(1):34-41.
    [23] 刘帅,赵文生,高思伟. 超宽带探地雷达煤层厚度探测试验研究[J]. 煤炭科学技术,2019,47(8):207-212.

    LIU Shuai,ZHAO Wensheng,GAO Siwei. Experimental study on coal seam thickness measurement of ultra-wide band ground penetrating radar[J]. Coal Science and Technology,2019,47(8):207-212.
    [24] 许献磊,王一丹,朱鹏桥,等. 基于高频雷达波的煤岩层位识别与追踪方法研究[J]. 煤炭科学技术,2022,50(7):50-58.

    XU Xianlei,WANG Yidan,ZHU Pengqiao,et al. Research on coal and rock horizon identification and tracking method based on high frequency radar waves[J]. Coal Science and Technology,2022,50(7):50-58.
    [25] 杨成全,孟田华,卢玉和. 云冈石窟石质、降尘样品的太赫兹光谱分析[J]. 山西大同大学学报(自然科学版),2011,27(2):17-19.

    YANG Chengquan,MENG Tianhua,LU Yuhe. Research on Terahertz spectrum of the Yungang Grotto samples[J]. Journal of Shanxi Datong University(Natural Science Edition),2011,27(2):17-19.
    [26] 宝日玛,赵昆,赵卉. 岩石的太赫兹光谱特性研究[J]. 现代科学仪器,2013(1):115-117,121.

    BAO Rima,ZHAO Kun,ZHAO Hui. Optical property of rock in Terahertz region[J]. Modern Scientific Instruments,2013(1):115-117,121.
    [27] 许长虹,滕学明,赵卉,等. 煤炭中氢含量与挥发分的太赫兹时域光谱研究[J]. 现代科学仪器,2013(4):228-230.

    XU Changhong,TENG Xueming,ZHAO Hui,et al. Analysis of hydrogen and volatile matter content in coal maceral using time-resolved Terahertz spectroscopy[J]. Modern Scientific Instruments,2013(4):228-230.
    [28] 王昕,苗曙光,丁恩杰. 煤岩介质在太赫兹频段的介电特性研究[J]. 中国矿业大学学报,2016,45(4):739-746.

    WANG Xin,MIAO Shuguang,DING Enjie. Study of dielectric property of coal and rock medium in Terahertz domain[J]. Journal of China University of Mining & Technology,2016,45(4):739-746.
    [29] 王昕,胡克想,俞啸,等. 基于太赫兹时域光谱技术的煤岩界面识别[J]. 工矿自动化,2017,43(1):29-34.

    WANG Xin,HU Kexiang,YU Xiao,et al. Coal-rock interface recognition based on Terahertz time-domain spectroscopy[J]. Industry and Mine Automation,2017,43(1):29-34.
    [30] 虞婧. 基于太赫兹光谱技术的煤岩在线识别方法研究[D]. 徐州:中国矿业大学,2021.

    YU Jing. Study on online identification method of coal and rock based on Terahertz spectroscopy[D]. Xuzhou:China University of Mining and Technology,2021.
    [31] 苗曙光,邵丹,刘忠育,等. 基于太赫兹时域光谱技术的煤岩识别方法研究[J]. 光谱学与光谱分析,2022,42(6):1755-1760.

    MIAO Shuguang,SHAO Dan,LIU Zhongyu,et al. Study on coal-rock identification method based on Terahertz time-domain spectroscopy[J]. Spectroscopy and Spectral Analysis,2022,42(6):1755-1760.
    [32] 苗曙光. 基于GPR与ESR的煤岩性状识别方法研究[D]. 徐州:中国矿业大学,2019.

    MIAO Shuguang. Study of coal-rock characteristics identification method based on GPR and ESR[D]. Xuzhou:China University of Mining and Technology,2019.
    [33] 曲星武,王金城. 煤的X射线分析[J]. 煤田地质与勘探,1980,8(2):33-40.

    QU Xingwu,WANG Jincheng. X-ray analysis of coal[J]. Coal Geology & Exploration,1980,8(2):33-40.
    [34] 李春山. X射线荧光岩屑识别技术研究[D]. 西安:西北大学,2010.

    LI Chunshan. Research on X-ray fluorescence cuttings identification technology[D]. Xi'an:Northwest University,2010.
    [35] 杨慧刚,乔志敏. 基于X射线和机器视觉的煤与矸石分选系统设计[J]. 工矿自动化,2017,43(3):85-89.

    YANG Huigang,QIAO Zhimin. Design of separation system of coal and gangue based on X-ray and machine vision[J]. Industry and Mine Automation,2017,43(3):85-89.
    [36] 耿秀云. 基于X光图像处理的煤矸石自动分选系统的研究[D]. 沈阳:东北大学,2014.

    GENG Xiuyun. Research on automatic sorting system of coal and rock based on X-ray image processing[D]. Shenyang:Northeastern University,2017.
    [37] 司垒,谭超,朱嘉皓,等. 基于X射线图像和激光点云的煤矸识别方法[J]. 仪器仪表学报,2022,43(9):193-205.

    SI Lei,TAN Chao,ZHU Jiahao,et al. A coal-gangue recognition method based on X-ray image and laser point cloud[J]. Chinese Journal of Scientific Instrument,2022,43(9):193-205.
    [38] 桂林电子科技大学. 一种基于主动激励红外热成像的煤岩界面识别装置:CN201721418045.6[P]. 2017-10-31.

    Guilin University of Electronic Technology. A coal-rock interface recognition device based on active excitation infrared thermal imaging is presented:CN201721418045.6[P]. 2017-10-31.
    [39] 张强,孙绍安,张坤,等. 基于主动红外激励的煤岩界面识别[J]. 煤炭学报,2020,45(9):3363-3370.

    ZHANG Qiang,SUN Shao'an,ZHANG Kun,et al. Coal and rock interface identification based on active infrared excitation[J]. Journal of China Coal Society,2020,45(9):3363-3370.
    [40] HARGRAVE C O,REID D C,HAINSWORTH D W,et al. Mining methods and apparatus:US 2009/0212216A1[P]. 2009-08-27.
    [41] RALSTON J C,STRANGE A D. Thermal infrared-based seam tracking for intelligent longwall shearer horizon control[C]. 12th Coal Operators' Conference,2012:78-85.
    [42] 张强,王海舰,王兆,等. 基于红外热像检测的截齿煤岩截割特性与闪温分析[J]. 传感技术学报,2016,29(5):686-692.

    ZHANG Qiang,WANG Haijian,WANG Zhao,et al. Analysis of coal-rock's cutting characteristics and flash temperature for peak based on infrared thermal image testing[J]. Chinese Journal of Sensors and Actuators,2016,29(5):686-692.
    [43] 张强,王海舰,郭桐,等. 基于截齿截割红外热像的采煤机煤岩界面识别研究[J]. 煤炭科学技术,2017,45(5):22-27.

    ZHANG Qiang,WANG Haijian,GUO Tong,et al. Study on coal-rock interface recognition of coal shearer based on cutting infrared thermal image of picks[J]. Coal Science and Technology,2017,45(5):22-27.
    [44] 刘建伟. KJH–D型防爆探地雷达在新景矿掘进巷道的应用[J]. 山东煤炭科技,2021,39(12):182-185.

    LIU Jianwei. Application of KJH-D explosion-proof ground penetrating radar in driving roadway of Xinjing Coal Mine[J]. Shandong Coal Science and Technology,2021,39(12):182-185.
    [45] 池津维. 王家岭煤矿12309工作面顶煤破碎特征及运移规律研究[J]. 能源与环保,2023,45(2):281-284.

    CHI Jinwei. Research on top coal fragmentation characteristics and movement law of 12309 working face in Wangjialing Coal Mine[J]. China Energy and Environmental Protection,2023,45(2):281-284.
    [46] 徐坤,李欣睿,陈忍忍. 地质雷达在煤矿采空区的探测应用研究[J]. 地质装备,2022,23(6):25-27,37.

    XU Kun,LI Xinrui,CHEN Renren. Research on the detection application of ground penetration radar in coal mine goaf[J]. Equipment for Geotechnical Engineering,2022,23(6):25-27,37.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  259
  • HTML全文浏览量:  43
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-26
  • 修回日期:  2024-01-10
  • 网络出版日期:  2024-01-31

目录

    /

    返回文章
    返回