留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤矿火灾智能预警系统研发与应用

刘东洋 张浪 姚海飞 徐长富 赵尤信 张逸斌 段思恭

刘东洋,张浪,姚海飞,等. 煤矿火灾智能预警系统研发与应用[J]. 工矿自动化,2024,50(1):1-8, 16.  doi: 10.13272/j.issn.1671-251x.2023070092
引用本文: 刘东洋,张浪,姚海飞,等. 煤矿火灾智能预警系统研发与应用[J]. 工矿自动化,2024,50(1):1-8, 16.  doi: 10.13272/j.issn.1671-251x.2023070092
LIU Dongyang, ZHANG Lang, YAO Haifei, et al. Research and application of intelligent early warning system for coal mine fires[J]. Journal of Mine Automation,2024,50(1):1-8, 16.  doi: 10.13272/j.issn.1671-251x.2023070092
Citation: LIU Dongyang, ZHANG Lang, YAO Haifei, et al. Research and application of intelligent early warning system for coal mine fires[J]. Journal of Mine Automation,2024,50(1):1-8, 16.  doi: 10.13272/j.issn.1671-251x.2023070092

煤矿火灾智能预警系统研发与应用

doi: 10.13272/j.issn.1671-251x.2023070092
基金项目: 国家自然科学基金面上项目(52074156);煤炭科学技术研究院有限公司科技发展基金资助项目(2023CX-I-16,2023CX-I-15)。
详细信息
    作者简介:

    刘东洋(1991—),男,满族,河北承德人,研究实习员,硕士研究生,主要从事矿井通风与火灾防治理论、技术及装备研发工作,E-mail:731005784@qq.com

  • 中图分类号: TD752

Research and application of intelligent early warning system for coal mine fires

  • 摘要: 目前煤矿火灾监测系统实现了对矿井煤自燃标志性气体、温度、烟雾、火焰等部分指标的单独监测,未对煤矿火灾相关因素进行有效、全面、统一的监测。针对该问题,从内因、外因2个方面分析了煤矿火灾潜在危险因素,提出一种分源分区监测火情态势的方法。内因火灾方面,主要针对较易发生火灾的工作面采空区、密闭采空区及人工自然发火观测点等进行监测;外因火灾方面,主要针对机电硐室及其配电点、带式输送机系统、电缆等方面进行监测。建立了煤矿火灾分源分区监测指标体系,采用人工监测或在线监测的方式定期采集或更新火灾特征参量数据,按数据采集方式及影响程度,将火灾监测指标分为动态指标、静态指标和关联指标。设计了火灾智能预警系统的总体架构和业务流程,采用基于多指标联合逻辑推理的预警方法实现内因火灾预警,采用基于D−S 证据理论的多参量融合预警方法实现外因火灾预警。现场试验结果表明,火灾智能预警系统实现了对矿井火灾的有效监测预警,具有煤矿火灾风险预警“一张图”可视化展示功能,同时具备火灾智能模拟演示功能及避灾路线动态规划功能。

     

  • 图  1  煤矿火灾智能预警系统总体架构

    Figure  1.  Overall architecture of intelligent early warning system for coal mine fire

    图  2  煤矿火灾智能预警业务流程

    Figure  2.  Intelligent early warning business process for coal mine fire

    图  3  煤矿火灾智能预警系统“一张图”平台

    Figure  3.  "One Picture" platform for intelligent early warning system of coal mine fire

    表  1  工作面采空区煤自燃气体指标、预警规则及对策措施

    Table  1.   Gas indicators, warning rules and countermeasures for coal spontaneous combustion in goaf of working face

    阶段 CO体积
    分数/10−6
    C2H6 C3H8 状态 安全风险等级 预警级别 对策措施
    0~50 无自燃隐患 低风险 蓝色预警 注氮等预防性防灭火措施
    50~500 缓慢氧化 一般风险 黄色预警 应加强监测,采取注氮、灌浆等预防性防灭火措施
    500~1000
    (默认)
    自热加速氧化 较大风险 橙色预警 应加强注氮、注浆防灭火措施的时间和工程量
    >1000
    (默认)
    激烈氧化 重大风险 红色预警 封闭火区,对该区域封闭处理,
    继续采取注氮、灌浆等防灭火措施
    下载: 导出CSV

    表  2  工作面回风流煤自燃气体指标、预警规则及对策措施

    Table  2.   Gas indicators, warning rules and countermeasures for coal spontaneous combustion in the return air flow of the working face

    阶段 CO体积分数/10−6 C2H6 C3H8 状态 安全风险等级 预警级别 对策措施
    0~24 无自燃隐患 低风险 蓝色预警 注氮等预防性防灭火措施
    24~100 缓慢氧化 一般风险 黄色预警 应加强监测,采取注氮、灌浆等预防性防灭火措施
    >100
    (默认)
    自热加速氧化 较大风险 橙色预警 应加强注氮、注浆防灭火措施的时间和工程量
    >100
    (默认)
    激烈氧化 重大风险 红色预警 封闭火区,对该区域封闭处理,
    继续采取注氮、灌浆等防灭火措施
    下载: 导出CSV

    表  3  基于 D−S 证据理论的多参量融合预警规则及对策措施

    Table  3.   Multi parameter fusion warning rules and countermeasures based on D-S evidence theory

    阶段 起火概率Pfire 安全风险等级 预警级别 对策措施
    0<Pfire<0.25 低风险 蓝色预警 喷淋喷粉等预防性防灭火措施
    0.25≤Pfire<0.5 一般风险 黄色预警 应加强监测,采取喷淋、喷粉等预防性防灭火措施
    0.5≤Pfire<0.75 较大风险 橙色预警 应加强喷淋、喷粉等防灭火措施的时间和工程量
    0.75≤Pfire<1 重大风险 红色预警 封闭火区,对该区域封闭处理,继续采取注喷淋、喷粉等防灭火措施
    下载: 导出CSV

    表  4  煤矿火灾预警跟踪考察结果

    Table  4.   Results of coal mine fire warning tracking and inspection

    考察区域 实际危险次数 蓝色预警次数 黄色预警次数 橙色预警次数 红色预警次数 预警准确率/%
    综采工作面 33 29 1 0 0 90.90
    密闭采空区 0 0 0 0 0
    人工自然发火观测点 0 0 0 0 0
    北二盘区4−2煤变电所 1 1 0 0 0 100.00
    主斜井一部胶带 3 2 0 0 0 66.00
    安全监控系统监测点 0 0 0 0 0
    下载: 导出CSV
  • [1] 邓军,文虎,张辛亥,等. 煤田火灾防治理论与技术[M]. 徐州:中国矿业大学出版社,2014.

    DENG Jun,WEN Hu,ZHANG Xinhai,et al. Coal field fire prevention theory and technology[M]. Xuzhou:China University of Mining & Technology Press,2014.
    [2] 邓军,肖旸,张辛亥,等. 煤火灾害防治技术的研究与应用[J]. 煤矿安全,2012,43(增刊1):58-61.

    DENG Jun,XIAO Yang,ZHANG Xinhai,et al. Research and application of coal fire disaster prevention and control technology[J]. Safety in Coal Mines,2012,43(S1):58-61.
    [3] 梁运涛,侯贤军,罗海珠,等. 我国煤矿火灾防治现状及发展对策[J]. 煤炭科学技术,2016,44(6):1-6,13.

    LIANG Yuntao,HOU Xianjun,LUO Haizhu,et al. Development countermeasures and current situation of coal mine fire prevention & extinguishing in China[J]. Coal Science and Technology,2016,44(6):1-6,13.
    [4] 孙继平,孙雁宇. 矿井火灾监测与趋势预测方法研究[J]. 工矿自动化,2019,45(3):1-4.

    SUN Jiping,SUN Yanyu. Research on methods of mine fire monitoring and trend prediction[J]. Industry and Mine Automation,2019,45(3):1-4.
    [5] 国家发展改革委,国家能源局,应急管理部,等. 关于印发《关于加快煤矿智能化发展的指导意见》的通知[EB/OL]. [2023-06-10]. https://www.gov.cn/zhengce/zhengceku/2020-03/05/content_5487081.htm.

    National Development and Reform Commission,National Energy Administration,Ministry of Emergency Management,et al. Notice on printing and distributing The guiding opinions on speeding up the intelligent development of coal mines[EB/OL]. [2023-06-10]. http://www.gov.cn/zhengce/zhengceku/2020-03/05/content_5487081.htm.
    [6] 国家能源局,国家矿山安全监察局. 国家能源局国家矿山安全监察局关于印发《煤矿智能化建设指南(2021年版)》的通知[EB/OL]. [2023-06-10]. http://www.gov.cn/zhengce/zhengceku/2021-06/19/content_5619502.htm.

    National Energy Administration,National Mine Safety Administration. Notice on issuing the Guide to Intelligent Construction in Coal Mines(2021 Edition) [EB/OL]. [2023-06-10]. http://www.gov.cn/zhengce/zhengceku/2021-06/19/content_5619502.htm.
    [7] 仲晓星,王建涛,周昆. 矿井煤自燃监测预警技术研究现状及智能化发展趋势[J]. 工矿自动化,2021,47(9):7-17.

    ZHONG Xiaoxing,WANG Jiantao,ZHOU Kun. Monitoring and early warning technology of coal spontaneous combustion in coal mines:research status and intelligent development trends[J]. Industry and Mine Automation,2021,47(9):7-17.
    [8] 车辉,邢慧芬,樊玉琦,等. 基于大数据的火灾智能预警系统[J]. 计算机系统应用,2020,29(10):120-126.

    CHE Hui,XING Huifen,FAN Yuqi,et al. Fire intelligent early warning system based on big data[J]. Computer Systems & Applications,2020,29(10):120-126.
    [9] 曹一凡. 基于物联网的火灾监测预警系统研究[D]. 唐山:华北理工大学,2020.

    CAO Yifan. Research on the Iot based fire monitoring and early warning system[D]. Tangshan:North China University of Science and Technology,2020.
    [10] 郭庆. 采空区煤自燃预警技术及应用研究[D]. 徐州:中国矿业大学,2021.

    GUO Qing. Research on early warning technology and application of coal spontaneous combustion in mined areas[D]. Xuzhou:China University of Mining and Technology,2021.
    [11] 陈晓晶. 基于“云−边−端”协同的煤矿火灾智能化防控体系建设[J]. 煤炭科学技术,2022,50(12):136-143.

    CHEN Xiaojing. Construction of intelligent prevention and control of coal mine fire based on "cloud-edge-end" cooperation[J]. Coal Science and Technology,2022,50(12):136-143.
    [12] 徐磊,李希建. 基于大数据的矿井灾害预警模型[J]. 煤矿安全,2018,49(3):98-101.

    XU Lei,LI Xijian. Mine disaster warning model based on big data[J]. Safety in Coal Mines,2018,49(3):98-101.
    [13] 岳宁芳,金彦,孙明福,等. 基于多指标气体的煤自燃进程分级预警研究[J]. 安全与环境学报,2020,20(6):2139-2146.

    YUE Ningfang,JIN Yan,SUN Mingfu,et al. Multi-staged warning system for controlling the coal spontaneous combustion based on the various index gases[J]. Journal of Safety and Environment,2020,20(6):2139-2146.
    [14] 丁震,李浩荡,张庆华. 煤矿灾害智能预警架构及关键技术研究[J]. 工矿自动化,2023,49(4):15-22.

    DING Zhen,LI Haodang,ZHANG Qinghua. Research on intelligent hazard early warning architecture and key technologies for coal mine[J]. Journal of Mine Automation,2023,49(4):15-22.
    [15] 张庆华,马国龙. 我国煤矿重大灾害预警技术现状及智能化发展展望[J]. 智能矿山,2020,1(1):52-62.

    ZHANG Qinghua,MA Guolong. Status and intelligent development prospect of coal mine major disaster early-warning technology in China[J]. Journal of Intelligent Mine,2020,1(1):52-62.
    [16] 李明建. 煤矿多灾种融合预警技术与装备[J]. 智能矿山,2022,3(7):156-157.

    LI Mingjian. Multi disaster integrated early warning technology and equipment for coal mines[J]. Journal of Intelligent Mine,2022,3(7):156-157.
    [17] 李杰. 青龙煤矿煤自燃无线监测预警技术研究[D]. 西安:西安科技大学,2020.

    LI Jie. Study on wireless monitoring and early warning technology of coal spontaneous combustion in Qinglong Coal Mine[D]. Xi'an:Xi'an University of Science and Technology,2020.
    [18] 程永新. 煤矿带式输送机火灾光纤传感检测技术研究[J]. 煤炭科学技术,2019,47(2):131-135.

    CHENG Yongxin. Technology research on optical fiber sensing detection for belt conveyor fire in coal mine[J]. Coal Science and Technology,2019,47(2):131-135.
    [19] 赵双斌. 煤矿机电硐室温度监测与预警功能实现[J]. 煤炭与化工,2022,45(7):86-88.

    ZHAO Shuangbin. The realization and effect evaluation of temperature monitoring and early warning function of coal mine electromechanical chamber[J]. Coal and Chemical Industry,2022,45(7):86-88.
    [20] 王国法,任怀伟,庞义辉,等. 煤矿智能化(初级阶段)技术体系研究与工程进展[J]. 煤炭科学技术,2020,48(7):1-27.

    WANG Guofa,REN Huaiwei,PANG Yihui,et al. Research and engineering progress of intelligent coal mine technical system in early stages[J]. Coal Science and Technology,2020,48(7):1-27.
    [21] 谭波,邵壮壮,郭岩,等. 基于指标气体关联分析的煤自燃分级预警研究[J]. 中国安全科学学报,2021,31(2):33-39.

    TAN Bo,SHAO Zhuangzhuang,GUO Yan,et al. Research on grading and early warning of coal spontaneous combustion based on correlation analysis of index gas[J]. China Safety Science Journal,2021,31(2):33-39.
    [22] 邓军,肖旸,陈晓坤,等. 矿井火灾多源信息融合预警方法的研究[J]. 采矿与安全工程学报,2011,28(4):638-643. doi: 10.3969/j.issn.1673-3363.2011.04.026

    DENG Jun,XIAO Yang,CHEN Xiaokun,et al. Study on early warning method of multi-source information fusion for coal mine fire[J]. Journal of Mining & Safety Engineering,2011,28(4):638-643. doi: 10.3969/j.issn.1673-3363.2011.04.026
    [23] 洪向共,钟地长,赵庆敏. 基于多传感器融合的陆空两栖机器人移动控制系统设计[J]. 科学技术与工程,2020,20(8):3103-3108.

    HONG Xianggong,ZHONG Dichang,ZHAO Qingmin. Design of mobile control system for air-ground amphibious robot based on multi-sensor fusion[J]. Science Technology and Engineering,2020,20(8):3103-3108.
    [24] 颜云华,金炜东. 基于多传感器信息融合的列车转向架机械故障诊断方法[J]. 计算机应用与软件,2020,37(8):48-51. doi: 10.3969/j.issn.1000-386x.2020.08.009

    YAN Yunhua,JIN Weidong. Mechanical fault diagnosis method of train bogie based on multi-sensor information fusion[J]. Computer Applications and Software,2020,37(8):48-51. doi: 10.3969/j.issn.1000-386x.2020.08.009
    [25] 王嫒娜,李英顺,贺喆. D−S证据理论融合粗糙集的火控系统状态评估[J]. 控制工程,2020,27(12):2176-2184.

    WANG Aina,LI Yingshun,HE Zhe. State evaluation of fire control system based on fusion of D-S evidence theory and rough set[J]. Control Engineering of China,2020,27(12):2176-2184.
    [26] 王俊松,李建林. D−S证据理论改进方案综述[J]. 信息化研究,2011,37(6):4-7.

    WANG Junsong,LI Jianlin. Overview of D-S evidence theory modification[J]. Informatization Research,2011,37(6):4-7.
    [27] 杨呈永,刘佳祎. 基于物联网节点加权的D−S证据理论数据融合算法[J]. 桂林理工大学学报,2019,39(3):731-736.

    YANG Chengyong,LIU Jiayi. Data fusion algorithm based on weighted D-S evidence theory in Internet of things[J]. Journal of Guilin University of Technology,2019,39(3):731-736.
    [28] 叶瑾,许枫,杨娟,等. 一种基于多传感器的复合量测IMM−EKF数据融合算法[J]. 电子学报,2020,48(12):2326-2330.

    YE Jin,XU Feng,YANG Juan,et al. A composite measurement IMM-EKF data fusion algorithm based on multi-sensor[J]. Acta Electronica Sinica,2020,48(12):2326-2330.
    [29] 韩丙光,赵子源,刘建,等. 基于多传感器信息融合的电缆火灾预警建模与仿真[J]. 电子设计工程,2022,30(10):150-154.

    HAN Bingguang,ZHAO Ziyuan,LIU Jian,et al. Modeling and simulation of cable fire warning based on multi-sensor information fusion[J]. Electronic Design Engineering,2022,30(10):150-154.
  • 加载中
图(3) / 表(4)
计量
  • 文章访问数:  860
  • HTML全文浏览量:  380
  • PDF下载量:  138
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-26
  • 修回日期:  2024-01-16
  • 网络出版日期:  2024-01-31

目录

    /

    返回文章
    返回