A coal mine data acquisition, fusion and sharing system based on object model
-
摘要: 针对目前煤矿数据采集、融合与共享存在的设备属性缺乏标准化且语义不统一、数据采集规约无法跨操作系统、数据访问实时性差、数据共享效率低等问题,设计了一种基于对象模型的煤矿数据采集融合共享系统。在基于位号的煤矿数据编码标准的基础上设计设备对象模型,克服了设备属性缺少标准化和设备属性语义不统一的问题;采用工业规约采集、Restful API问答式采集和文件数据采集等数据接入方式,可支持国产化操作系统,提供了方便的报文监视工具,能够准确判断通信异常原因;通过设备对象模型映射实现数据融合,引入数据治理机制确保数据的准确性和一致性,以对象模型的形式存储数据来节省存储空间、提高存储效率;将所有设备对象数据存储到一张表中,对象化的数据共享接口可简化成实时数据共享接口和历史数据共享接口,减少了冗余接口,从而降低了数据访问次数。应用结果表明,该系统在对设备数据标准化后降低了数据使用过程中语义解析的难度,同时提高了数据的计算、存储和访问性能,为大数据分析提供了保障。Abstract: In current coal mine data acquisition, fusion, and sharing, there are problems of lack of standardization and semantic inconsistency in device attributes, inability to cross operating systems in data acquisition protocols, poor real-time data access, and low data sharing efficiency. In order to solve the above problems, a coal mine data acquisition, fusion, and sharing system based on object model is designed. On the basis of the coding standard for coal mine data based on tag numbers, a device object model is designed to overcome the problems of lack of standardization of device attributes and semantic inconsistency in device attributes. By using industrial protocol acquisition, Restful API Q&A acquisition, and file data acquisition methods for data access, it can support domestic operating systems and provide convenient message monitoring tools to accurately determine the cause of communication abnormalities. The model implements data fusion through device object model mapping, introduces data governance mechanisms to ensure data accuracy and consistency, and stores data in the form of object models to save storage space and improve storage efficiency. The model stores all device object data in one table. The object-oriented data sharing interface can be simplified into real-time data sharing interface and historical data sharing interface, reducing redundant interfaces and thus reducing data access times. The application results show that the system reduces the difficulty of semantic parsing during data usage after standardizing device data. The system improves the performance of data computation, storage, and access, providing guarantees for big data analysis.
-
Key words:
- data acquisition /
- data fusion /
- data sharing /
- object model /
- data encoding /
- data governance /
- data storage
-
表 1 数据计算性能对比
Table 1. Comparison of data calculation performance
计算方式 准确率/% 每10万条数据计算用时/s 数据存储前计算 90 1 数据使用时计算 87 5 表 2 数据存储性能对比
Table 2. Comparison of data storage performance
数据库 松散数据存储速率/(kbit·s−1) 对象数据存储速率/(kbit·s−1) Redis 200 2 000 ClickHouse 100 5 000 表 3 数据查询性能对比
Table 3. Comparison of data query performance
数据库 松散数据查询速率/(kbit·s−1) 对象数据查询速率/(kbit·s−1) Redis 1 000 4 000 ClickHouse 100 1 000 -
[1] 王国法,刘峰,孟祥军,等. 煤矿智能化(初级阶段)研究与实践[J]. 煤炭科学技术,2019,47(8):1-36.WANG Guofa,LIU Feng,MENG Xiangjun,et al. Research and practice on intelligent coal mine construction(primary stage)[J]. Coal Science and Technology,2019,47(8):1-36. [2] 王国法,杜毅博. 煤矿智能化标准体系框架与建设思路[J]. 煤炭科学技术,2020,48(1):1-9.WANG Guofa,DU Yibo. Coal mine intelligent standard system framework and construction ideas[J]. Coal Science and Technology,2020,48(1):1-9. [3] 王国法,王虹,任怀伟,等. 智慧煤矿2025情景目标和发展路径[J]. 煤炭学报,2018,43(2):295-305.WANG Guofa,WANG Hong,REN Huaiwei,et al. 2025 scenarios and development path of intelligent coal mine[J]. Journal of China Coal Society,2018,43(2):295-305. [4] 张鹏. 智能矿山大数据体系建设探索[J]. 工矿自动化,2021,47(增刊1):21-23,44.ZHANG Peng. Exploration on construction of big data system for intelligent mine[J]. Industry and Mine Automation,2021,47(S1):21-23,44. [5] 杜毅博,赵国瑞,巩师鑫. 智能化煤矿大数据平台架构及数据处理关键技术研究[J]. 煤炭科学技术,2020,48(7):177-185.DU Yibo,ZHAO Guorui,GONG Shixin. Study on big data platform architecture of intelligent coal mine and key technologies of data processing[J]. Coal Science and Technology,2020,48(7):177-185. [6] 韩安. 基于Hadoop的煤矿数据中心架构设计[J]. 工矿自动化,2019,45(8):60-64.HAN An. Architecture design of coal mine data center based on Hadoop[J]. Industry and Mine Automation,2019,45(8):60-64. [7] 方乾,张晓霞,王霖,等. 智能化煤矿大数据治理关键技术研究、实践与应用[J]. 工矿自动化,2023,49(5):37-45,73.FANG Qian,ZHANG Xiaoxia,WANG Lin,et al. Research,practice and application of key technologies of intelligent coal mine big data governance[J]. Journal of Mine Automation,2023,49(5):37-45,73. [8] 毛善君,杨乃时,高彦清,等. 煤矿分布式协同“一张图”系统的设计和关键技术[J]. 煤炭学报,2018,43(1):280-286.MAO Shanjun,YANG Naishi,GAO Yanqing,et al. Design and key technology research of coal mine distributed cooperative "one map" system[J]. Journal of China Coal Society,2018,43(1):280-286. [9] 孟光伟. 基于大数据技术的区域煤矿监管数据服务平台设计[J]. 工矿自动化,2021,47(10):97-102,109.MENG Guangwei. Design of a regional coal mine supervision data service platform based on big data technology[J]. Industry and Mine Automation,2021,47(10):97-102,109. [10] 贺耀宜,刘丽静,赵立厂,等. 基于工业物联网的智能矿山基础信息采集关键技术与平台[J]. 工矿自动化,2021,47(6):17-24.HE Yaoyi,LIU Lijing,ZHAO Lichang,et al. Key technology and platform of intelligent mine basic information acquisition based on industrial Internet of things[J]. Industry and Mine Automation,2021,47(6):17-24. [11] 李国民,章鳌,贺耀宜,等. 智能矿井多元监控数据集成关键技术研究[J]. 工矿自动化,2022,48(8):127-130,146.LI Guomin,ZHANG Ao,HE Yaoyi,et al. Research on key technologies of multi-element monitoring data integration in intelligent mine[J]. Journal of Mine Automation,2022,48(8):127-130,146. [12] 崔亚仲,白明亮,李波. 智能矿山大数据关键技术与发展研究[J]. 煤炭科学技术,2019,47(3):66-74.CUI Yazhong,BAI Mingliang,LI Bo. Key technology and development research on big data of intelligent mine[J]. Coal Science and Technology,2019,47(3):66-74. [13] 袁亮,俞啸,丁恩杰,等. 矿山物联网人−机−环状态感知关键技术研究[J]. 通信学报,2020,41(2):1-12.YUAN Liang,YU Xiao,DING Enjie,et al. Research on key technologies of human-machine-environment states perception in mine Internet of things[J]. Journal on Communications,2020,41(2):1-12. [14] 谭章禄,马营营,袁慧. 煤炭大数据平台建设的关键技术及管理协同架构[J]. 工矿自动化,2018,44(6):16-20.TAN Zhanglu,MA Yingying,YUAN Hui. Key technologies and management collaborative architecture of construction of coal big data platform[J]. Industry and Mine Automation,2018,44(6):16-20. [15] 谭章禄,王美君. 智慧矿山数据治理概念内涵、发展目标与关键技术[J]. 工矿自动化,2022,48(5):6-14.TAN Zhanglu,WANG Meijun. Research on the concept connotation,development goal and key technologies of data governance for smart mine[J]. Journal of Mine Automation,2022,48(5):6-14. [16] 孙彦景,于满,何妍君. 煤矿信息物理融合系统模型[J]. 计算机研究与发展,2011,48(增刊2):295-301.SUN Yanjing,YU Man,HE Yanjun. Modeling of cyber-physical system for coal mine[J]. Journal of Computer Research and Development,2011,48(S2):295-301. [17] 庞义辉,王国法,任怀伟. 智慧煤矿主体架构设计与系统平台建设关键技术[J]. 煤炭科学技术,2019,47(3):35-42.PANG Yihui,WANG Guofa,REN Huaiwei. Main structure design of intelligent coal mine and key technology of system platform construction[J]. Coal Science and Technology,2019,47(3):35-42. [18] 刘道玉,程宝军. 基于位置服务的煤矿智能化综合管控平台研究与应用[J]. 中国煤炭,2022,48(9):94-102. doi: 10.3969/j.issn.1006-530X.2022.09.014LIU Daoyu,CHENG Baojun. Research and application of intelligent integrated management and control platform for coal mine based on location-based service[J]. China Coal,2022,48(9):94-102. doi: 10.3969/j.issn.1006-530X.2022.09.014 [19] 姜德义,魏立科,王翀,等. 智慧矿山边缘云协同计算技术架构与基础保障关键技术探讨[J]. 煤炭学报,2020,45(1):484-492.JIANG Deyi,WEI Like,WANG Chong,et al. Discussion on the technology architecture and key basic support technology for intelligent mine edge-cloud collaborative computing[J]. Journal of China Coal Society,2020,45(1):484-492. [20] 刘海强,陈晓晶,张兴华,等. 面向煤矿安全监控的数据仓库关键技术[J]. 工矿自动化,2022,48(4):31-37,113.LIU Haiqiang,CHEN Xiaojing,ZHANG Xinghua,et al. Key technologies of data warehouse for coal mine safety monitoring[J]. Journal of Mine Automation,2022,48(4):31-37,113. [21] 谭章禄,马营营. 煤炭大数据研究及发展方向[J]. 工矿自动化,2018,44(3):49-52.TAN Zhanglu,MA Yingying. Research on coal big data and its developing direction[J]. Industry and Mine Automation,2018,44(3):49-52.