Experimental study on the permeability features of long flame gas water phase
-
摘要: 长焰煤内部蕴藏大量煤层气,随着开采深度的不断增加,需要对煤储层中煤层气与地下水之间的复杂渗流特性进行探索,以降低煤层气开采难度、提高煤层气开采效率。以内蒙古鄂尔多斯准格尔旗魏家峁矿区长焰煤为实验对象,采用TCXS−Ⅱ型煤岩气水相对渗透率测定仪进行长焰煤气水相渗实验,利用非稳态法得到不同有效应力、孔隙压力和温度作用下长焰煤在气驱水过程中的气水相渗特征,结果表明:① 当有效应力由3.7 MPa增大至7.7 MPa时,气相相对渗透率上升幅度减小,而水相相对渗透率下降幅度略有增加;有效应力的增大会对流体的渗透能力产生抑制作用,且对水相渗流的抑制作用大于气相渗流;残余水饱和度随着有效应力的增大而增大。② 当孔隙压力由2 MPa增大至6 MPa时,水相相对渗透率曲线下降幅度变缓,气相相对渗透率曲线上升幅度更加明显,气水共渗范围变宽,等渗点饱和度增大,残余水饱和度减小。③ 当温度由20 ℃升高至80 ℃时,气相相对渗透率增长幅度及水相相对渗透率下降幅度均逐渐变大,气水共渗范围变宽,残余水饱和度呈下降趋势,气相渗流量呈增长趋势。该研究结果可为长焰煤储层水力压裂和注热开采等煤层气开采技术研究提供理论依据和实验参考。Abstract: There is a large amount of CBM in the long flame coal. With the continuous increase of mining depth, it is necessary to explore the complex permeability features between CBM and groundwater in the coal reservoir to reduce the difficulty of CBM mining and improve the efficiency of CBM mining. Taking the long flame coal in the Weijiamao mining area of Zhungeer Banner, Ordos, Inner Mongolia as the experimental object, the TCXS-II coal rock gas water relative permeability tester is used to conduct the long flame gas water phase permeability experiment. The non steady state method is used to obtain the gas water phase permeability features of long flame coal under different effective stresses, pore pressures, and temperatures during the gas water drive process. The results show the following points. ① When the effective stress increases from 3.7 MPa to 7.7 MPa, the increase in gas phase relative permeability decreases, while the decrease in water phase relative permeability slightly increases. The increase of effective stress will have an inhibitory effect on the permeability of the fluid, and the inhibitory effect on water phase seepage is greater than that on gas phase seepage. The residual water saturation increases with the increase of effective stress. ② When the pore pressure increases from 2 MPa to 6 MPa, the decrease in the relative permeability curve of the water phase slows down, and the increase in the relative permeability curve of the gas phase becomes more obvious. The range of gas water co-permeation becomes wider, the saturation of the isotonic point increases, and the residual water saturation decreases. ③ When the temperature rises from 20 ℃ to 80 ℃, the increase in gas phase relative permeability and the decrease in water phase relative permeability gradually increase. The range of gas water co-permeation becomes wider, the residual water saturation shows a decreasing trend, and the gas phase permeability flow rate shows an increasing trend. The research results can provide theoretical basis and experimental reference for the research of CBM extraction technologies such as hydraulic fracturing and thermal injection in long flame coal reservoirs.
-
表 1 不同温度下甲烷动力黏度
Table 1. Methane dynamic viscosity under different temperatures
温度/℃ 20 40 60 80 甲烷动力黏度/(10−3mPa·s) 10.806 11.502 12.140 12.699 表 2 不同有效应力下气水相渗实验参数
Table 2. Experimental parameters of gas water relative permeability under different effective stress
围压/MPa 轴压/MPa 有效应力/MPa 气相 水相 孔隙压力/MPa 温度/℃ 5 4 3.7 甲烷 水 2 20 7 6 5.7 甲烷 水 2 20 9 8 7.7 甲烷 水 2 20 表 3 不同孔隙压力下气水相渗实验参数
Table 3. Experimental parameters of gas water relative permeability under different pore pressures
围压/MPa 轴压/MPa 有效应力/MPa 气相 水相 孔隙压力/MPa 温度/℃ 7 6 5.7 甲烷 水 2 20 7 6 5.7 甲烷 水 4 20 7 6 5.7 甲烷 水 6 20 表 4 不同温度下气水相渗实验参数
Table 4. Experimental parameters of gas water relative permeability under different temperatures
围压/MPa 轴压/MPa 有效应力/MPa 气相 水相 孔隙压力/MPa 温度/℃ 7 6 5.7 甲烷 水 2 20 7 6 5.7 甲烷 水 2 40 7 6 5.7 甲烷 水 2 60 7 6 5.7 甲烷 水 2 80 表 5 不同有效应力下气水相渗实验结果
Table 5. Experimental results of gas water relative permeability under different effective stress
有效应力/MPa 残余水饱和度/% 等渗点饱和度/% 等渗点相对渗透率 3.7 18.73 46.59 0.11 5.7 19.90 57.10 0.21 7.7 22.71 60.85 0.25 表 6 不同孔隙压力下气水相渗实验结果
Table 6. Experimental results of gas water relative permeability under different pore pressure
孔隙压力/MPa 残余水饱和度/% 等渗点饱和度/% 等渗点相对渗透率 2 19.9 57.1 0.21 4 17.2 60.7 0.19 6 16.1 62.4 0.12 表 7 不同温度下气水相渗实验结果
Table 7. Experimental results of gas water relative permeability under different temperatures
温度/℃ 气相绝对渗透率/
10−3 μm2残余水
饱和度/%等渗点
饱和度/%等渗点相对
渗透率20 1.13 19.9 57.1 0.21 40 0.91 13.1 55.4 0.30 60 0.94 8.3 47.9 0.36 80 1.01 6.9 23.3 0.29 -
[1] 周子勋,赵姗. 煤炭清洁高效利用势在必行[N]. 中国经济时报,2023-03-16(4).ZHOU Zixun,ZHAO Shan. Clean and efficient utilization of coal is imperative[N]. China Economic Times,2023-03-16(4). [2] 简阔,傅雪海,王可新,等. 中国长焰煤物性特征及其煤层气资源潜力[J]. 地球科学进展,2014,29(9):1065-1074. doi: 10.11867/j.issn.1001-8166.2014.09.1065JIAN Kuo,FU Xuehai,WANG Kexin,et al. Physical characteristics and CBM resources potential of long flame coal in China[J]. Advances in Earth Science,2014,29(9):1065-1074. doi: 10.11867/j.issn.1001-8166.2014.09.1065 [3] 刘文杰,程晓阳. 煤的大孔隙网络模型提取及气−水两相流运移模拟[J]. 矿业研究与开发,2020,40(6):19-22.LIU Wenjie,CHENG Xiaoyang. Extraction of macropore network model and simulation on two phase(gas-water) flow migration of coal[J]. Mining Research and Development,2020,40(6):19-22. [4] 罗怡鑫,李莹,王怀洪,等. 黄河北煤田10号煤煤层气储层物性及特征研究[J]. 中国煤炭地质,2021,33(1):26-30. doi: 10.3969/j.issn.1674-1803.2021.01.05LUO Yixin,LI Ying,WANG Huaihong,et al. Study on coal No.10 CBM reservoir physical property and characteristics in Huanghebei Coalfield[J]. Coal Geology of China,2021,33(1):26-30. doi: 10.3969/j.issn.1674-1803.2021.01.05 [5] 孟艳军,汤达祯,许浩,等. 煤岩气水相对渗透率研究进展与展望[J]. 煤炭科学技术,2014,42(8):51-55.MENG Yanjun,TANG Dazhen,XU Hao,et al. Progress and prospect of gas-water relative permeability of coal and rock[J]. Coal Science and Technology,2014,42(8):51-55. [6] SHEN Shaicheng,FANG Zhiming,LI Xiaochun. Laboratory measurements of the relative permeability of coal:a review[J]. Energies,2020,13(21):1-24. [7] 李姝佳. 基于NMR的热力耦合下煤储层气水相渗特征试验研究[D]. 西安:西京学院,2022.LI Shujia. Experimental study on gas-water relative permeability characteristics of coal reservoir under thermal coupling based on NMR[D]. Xi'an:Xijing College,2022. [8] 宋文辉. 页岩气藏微观流体运移机制及流动模拟方法[D]. 东营:中国石油大学(华东),2020.SONG Wenhui. Pore-scale fluid transport mechanisms and flow simulation method in shale gas reservoir[D]. Dongying:China University of Petroleum (East China),2020. [9] 万腾. 碳酸盐岩气藏气水两相渗流特征及产能模拟研究[D]. 北京:中国石油大学(北京),2019.WAN Teng. Experimental Investigation of two-phase seepage characteristics and deliverability of carbonate gas reservoir[D]. Beijing:China University of Petroleum (Beijing),2019. [10] 张广东,吴铮,李钇池,等. 高温高压非稳态气水相渗测试装置及方法[J]. 特种油气藏,2021,28(2):78-82. doi: 10.3969/j.issn.1006-6535.2021.02.011ZHANG Guangdong,WU Zheng,LI Yichi,et al. Testing device and method for unsteady gas-water relative permeability under high temperature and high pressure[J]. Special Oil & Gas Reservoirs,2021,28(2):78-82. doi: 10.3969/j.issn.1006-6535.2021.02.011 [11] 张钰祥,杨胜来,王蓓东,等. 温度对多类型超深层碳酸盐岩气藏渗流能力的影响[J]. 天然气地球科学,2022,33(11):1895-1905.ZHANG Yuxiang,YANG Shenglai,WANG Beidong,et al. Effects of temperature on seepage capacity of multi-type ultra-deep carbonate gas reservoir[J]. Natural Gas Geoscience,2022,33(11):1895-1905. [12] 张晓阳. 郑庄区块煤层气直井定量化排采制度优化模型[D]. 徐州:中国矿业大学,2018.ZHANG Xiaoyang. Optimization model of quantitative drainage system for CBM vertical wells in Zhengzhuang Block[D]. Xuzhou:China University of Mining and Technology,2018. [13] 任广磊. 致密砂岩气藏气水两相渗流的核磁共振在线实验研究[J]. 中国石油大学胜利学院学报,2021,35(3):46-49.REN Guanglei. On-line NMR experimental study on gas-water flow in tight sandstone gas reservoirs[J]. Journal of Shengli College China University of Petroleum,2021,35(3):46-49. [14] 张瑾. 致密储层超临界二氧化碳−水−岩作用机理研究[D]. 成都:西南石油大学,2018.ZHANG Jin. Research on mechanism of supercritical carbon dioxide-water-rock interaction in tight reservoir[D]. Chengdu:Southwest Petroleum University,2018. [15] 李思颖. 考虑压敏效应的致密气藏水锁规律研究[D]. 北京:中国石油大学(北京),2019.LI Siying. Study on water-locking law of tight gas reservoir considering pressure sensitive effect[D]. Beijing:China University of Petroleum(Beijing),2019. [16] 李叶朋. 二连盆地霍林河煤田低阶煤孔隙结构模式及气液流动规律[D]. 徐州:中国矿业大学,2018.LI Yepeng. Pore structure model and gas-liquid flow law of low rank coal in Huolinhe Coalfield,Erlian Basin[D]. Xuzhou:China University of Mining and Technology,2018. [17] 马云峰,赵建国,孙龙,等. 应力作用下气藏水体微观赋存特征及渗流规律——以鄂尔多斯盆地神木气田二叠系盒8段致密储层为例[J]. 石油实验地质,2023,45(3):466-473. doi: 10.11781/sysydz202303466MA Yunfeng,ZHAO Jianguo,SUN Long,et al. Microscopic occurrence characteristics and seepage law of water bodies in gas reservoir under stress:a case study of tight reservoirs in the eighth member of Permian Shihezi Formation,Shenmu Gas Field,Ordos Basin[J]. Petroleum Geology & Experiment,2023,45(3):466-473. doi: 10.11781/sysydz202303466 [18] 鲁瑞彬,王雯娟,胡琳,等. 高温高压气藏衰竭开发气水相渗变化规律探讨[J]. 中国海上油气,2020,32(2):88-95.LU Ruibin,WANG Wenjuan,HU Lin,et al. Discussion on the change laws of gas-water relative permeability in the depletion development of HTHP gas reservoirs[J]. China Offshore Oil and Gas,2020,32(2):88-95. [19] 苏玉亮,李新雨,李蕾,等. 基于核磁共振可视化试验的致密气藏气水两相渗流机制[J]. 中国石油大学学报(自然科学版),2021,45(5):104-112. doi: 10.3969/j.issn.1673-5005.2021.05.012SU Yuliang,LI Xinyu,LI Lei,et al. Gas-water two-phase percolation mechanism in tight gas reservoirs based on NMR visualization experiment[J]. Journal of China University of Petroleum(Edition of Natural Science),2021,45(5):104-112. doi: 10.3969/j.issn.1673-5005.2021.05.012 [20] 莫邵元,何顺利,雷刚,等. 致密气藏气水相对渗透率理论及实验分析[J]. 天然气地球科学,2015,26(11):2149-2154. doi: 10.11764/j.issn.1672-1926.2015.11.2149MO Shaoyuan,HE Shunli,LEI Gang,et al. Theoretical and experimental analysis of gas-water relative permeability in tight gas[J]. Natural Gas Geoscience,2015,26(11):2149-2154. doi: 10.11764/j.issn.1672-1926.2015.11.2149 [21] 姚天福. 致密气藏考虑储层参数时变性产量递减预测方法研究[D]. 北京:中国石油大学(北京),2020.YAO Tianfu. Production decline analysis of tight gas wells with time-dependent mechanisms[D]. Beijing:China University of Petroleum (Beijing),2020. [22] SY/T 5345—2007岩石中两相流体相对渗透率测定方法:[S].SY/T 5345-2007 Test method for two phase relative permeability in rock[S].