留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于GJO−MLP的露天矿边坡变形预测模型

刘光伟 郭直清 刘威

刘光伟,郭直清,刘威. 基于GJO−MLP的露天矿边坡变形预测模型[J]. 工矿自动化,2023,49(9):155-166.  doi: 10.13272/j.issn.1671-251x.2023070017
引用本文: 刘光伟,郭直清,刘威. 基于GJO−MLP的露天矿边坡变形预测模型[J]. 工矿自动化,2023,49(9):155-166.  doi: 10.13272/j.issn.1671-251x.2023070017
LIU Guangwei, GUO Zhiqing, LIU Wei. Prediction model of slope deformation in open pit mines based on GJO-MLP[J]. Journal of Mine Automation,2023,49(9):155-166.  doi: 10.13272/j.issn.1671-251x.2023070017
Citation: LIU Guangwei, GUO Zhiqing, LIU Wei. Prediction model of slope deformation in open pit mines based on GJO-MLP[J]. Journal of Mine Automation,2023,49(9):155-166.  doi: 10.13272/j.issn.1671-251x.2023070017

基于GJO−MLP的露天矿边坡变形预测模型

doi: 10.13272/j.issn.1671-251x.2023070017
基金项目: 国家自然科学基金项目(52374123, 51974144);2021年辽宁省“揭榜挂帅”科技攻关项目(2021JH1/10400011);辽宁省高等学校基本科研项目(LJKZ0340);辽宁工程技术大学学科创新团队资助项目(LNTU20TD-07)。
详细信息
    作者简介:

    刘光伟(1981—),男,辽宁沈阳人,教授,博士,主要研究方向为露天矿开采设计理论、矿业系统工程、智慧矿山,E-mail:liuguangwei@lntu.edu.cn

    通讯作者:

    郭直清(1997—),男,贵州毕节人,博士研究生,主要研究方向为露天矿开采理论与技术、无人驾驶集群控制、智能采矿与进化计算,E-mail: gzq142857@126.com

  • 中图分类号: TD824.7

Prediction model of slope deformation in open pit mines based on GJO-MLP

  • 摘要: 露天矿边坡变形受地质结构、水文地质条件、采矿活动等多种因素影响,使得预测模型复杂,难以准确捕捉所有影响因素。目前,大量监测设备部署在露天矿边坡周围,用于实时记录露天矿边坡位移数据,这些数据具有高维度、时序关联性及非线性等特性。如果在其他条件未知而只有数据的情况下,使用传统的边坡稳定性分析方法无法有效进行边坡变形预测,而采用仅基于数据的模型对露天矿边坡位移数据进行预测对边坡稳定性的事前分析十分必要。针对上述问题,提出了一种基于金豺优化多层感知机(GJO−MLP)的露天矿边坡变形预测模型。GJO中各智能体间相互独立,可以通过并行计算加速优化MLP的训练过程;GJO能够结合MLP的非线性建模和特征提取能力,使得优化后的MLP在处理复杂问题时更具优势。为检验GJO−MLP的可行性和有效性,将GJO−MLP分别与基于蚁群算法优化的MLP(ACO−MLP)、基于引力搜索算法优化的MLP(GSA−MLP)及基于差分进化算法优化的MLP(DE−MLP)进行对比分析,在6个数据集上的仿真实验结果表明:在相同实验条件下,相较于其他3种算法,GJO−MLP表现出更好的寻优性能。将基于GJO−MLP的边坡变形预测模型应用于宝日希勒露天矿边坡变形预测和花坪子边坡变形预测中,结果表明:在相同条件下,相较于其他3种算法,基于GJO−MLP的边坡变形预测模型在对边坡变形数据进行预测时不仅表现出更好的预测求解性能,而且还具有更好的可行性和鲁棒性。

     

  • 图  1  GJO算法流程

    Figure  1.  Flow of GJO

    图  2  MLP模型结构

    Figure  2.  Topology of MLP

    图  3  GJO算法训练MLP模型过程

    Figure  3.  GJO training MLP model process

    图  4  各算法在不同数据集上的迭代收敛曲线

    Figure  4.  Iterative convergence curve of each algorithm under different datasets

    图  5  4种算法对东帮685观测点变形监测预测误差

    Figure  5.  Prediction error of deformation monitoring of 685 observation points in Dongbang by four algorithms

    图  6  4种算法对花坪子边坡观测点TP02−HPZ的预测结果

    Figure  6.  Prediction results of TP02-HPZ of Huapingzi slope observation point by four algorithms

    图  7  4种算法对观测点TP02−HPZ的预测绝对误差和

    Figure  7.  The sum of the forecast absolute errors of the four algorithms for the observation point TP02-HPZ

    表  1  数据集详细信息

    Table  1.   Datasets details

    数据集 训练样本数 测试样本数 类别
    Balloon 16 16 2
    Iris 150 150 3
    Breast cancer 599 100 2
    Heart 80 187 2
    Cosine 31 38
    Sine 126 252
    下载: 导出CSV

    表  2  算法参数设置

    Table  2.   Algorithm parameter settings

    算法 参数
    GJO−MLP 种群规模
    最大迭代次数
    30
    200
    ACO−MLP 种群规模
    最大迭代次数
    初始信息素
    信息素指数权重
    蒸发率
    30
    200
    10
    0.3
    0.1
    GSA−MLP 种群规模
    最大迭代次数
    Rnorm
    30
    200
    2
    DE−MLP 种群规模
    最大迭代次数
    交叉概率
    30
    200
    0.2
    下载: 导出CSV

    表  3  MLP初始模型结构

    Table  3.   MLP initial model structure

    数据集 属性 MLP结构
    Balloon 4 4−9−1
    Iris 4 4−9−3
    Breast cancer 9 9−19−1
    Heart 22 22−45−1
    Cosine 1 1−15−1
    Sine 1 1−15−1
    下载: 导出CSV

    表  4  数据集实验结果

    Table  4.   Classification datasets experimental results

    数据集 算法 MSE(AVE±STD) 分类精度/% 测试误差
    Balloon GJO−MLP 0.135 2±0.001 5 34.00
    ACO−MLP 0.600 0±1.17×10−16 40.00
    GSA−MLP 0.200 4±0.057 9 6.00
    DE−MLP 0.160 7±0.009 5 13.50
    Iris GJO−MLP 0.056 4±0.017 4 51.67
    ACO−MLP 1.845 7±0.011 8 0
    GSA−MLP 0.286 9±0.139 0 21.87
    DE−MLP 0.146 8±0.024 9 38.33
    Breast cancer GJO−MLP 0.001 7±2.53×104 98.00
    ACO−MLP 0.663 2±1.17×10−16 0
    GSA−MLP 0.016 1±0.007 4 50.00
    DE−MLP 0.024 2±0.024 9 6.10
    Heart GJO−MLP 0.112 0±0.013 2 73.75
    ACO−MLP 0.500 0±0 50.00
    GSA−MLP 0.160 3±0.019 4 41.25
    DE−MLP 0.177 3±0.011 2 69.50
    Cosine GJO−MLP 0.177 8±6.151×104 4.971 6
    ACO−MLP 1.080 1±2.62×10−6 14.504 2
    GSA−MLP 0.296 3±0.070 0 7.924 1
    DE−MLP 0.181 1±0.001 2 6.356 9
    Sine GJO−MLP 0.455 3±0.002 4 149.421 7
    ACO−MLP 1.498 9±8.83×10−7 251.958 8
    GSA−MLP 0.463 6±0.004 4 152.154 0
    DE−MLP 0.442 2±0.007 7 150.004 5
    下载: 导出CSV

    表  5  东帮685观测点变形监测数据

    Table  5.   Deformation monitoring data of Dongbang 685 mm

    监测时间 北方向位移 东方向位移 竖直位移
    2022−10−01T08:00:00 −55.800 −160.100 −63.500
    2022−10−01T16:00:00 −54.700 −159.700 −68.600
    2022−10−02T00:00:00 −57.400 −159.000 −64.400
    2022−10−02T08:00:00 −54.800 −159.200 −60.900
    2022−10−02T16:00:00 −55.900 −160.100 −63.400
    2022−10−03T00:00:00 −55.600 −157.800 −63.000
    2022−10−03T08:00:00 −54.400 −157.800 −62.800
    2022−10−03T16:00:00 −53.600 −158.700 −63.900
    2022−10−04T00:00:00 −55.900 −157.400 −63.700
    2022−10−04T08:00:00 −56.500 −158.100 −64.800
    2022−10−04T16:00:00 −54.700 −161.800 −64.600
    2022−10−23T00:00:00 −53.700 −157.400 −65.000
    2022−10−23T08:00:00 −56.100 −158.500 −67.600
    2022−10−23T16:00:00 −53.800 −161.600 −69.300
    2022−10−24T00:00:00 −52.600 −156.700 −63.500
    2022−10−24T08:00:00 −55.400 −160.400 −69.100
    2022−10−24T16:00:00 −54.400 −160.400 −69.500
    2022−10−25T00:00:00 −51.700 −159.600 −67.900
    2022−10−25T08:00:00 −55.700 −157.700 −69.300
    2022−10−25T16:00:00 −53.000 −159.800 −69.600
    2022−10−26T00:00:00 −51.000 −159.000 −65.200
    2022−10−26T08:00:00 −54.600 −157.200 −66.500
    下载: 导出CSV

    表  6  4种算法对东帮685观测点变形监测数据的预测结果

    Table  6.   Prediction results of deformation monitoring data of 685 observation points in Dongbang by four algorithms mm

    监测时间 实际监测值 GJO−MLP ACO−MLP GSA−MLP DE−MLP
    预测值 绝对误差 预测值 绝对误差 预测值 绝对误差 预测值 绝对误差
    2022−10−01T08:00:00 55.800 56.873 1.073 60.500 4.700 58.902 3.102 58.105 2.305
    2022−10−01T16:00:00 54.700 57.013 2.313 60.500 5.800 58.369 3.669 58.187 3.487
    2022−10−02T00:00:00 57.400 56.238 1.162 60.500 3.100 59.067 1.667 57.941 0.541
    2022−10−02T08:00:00 54.800 57.011 2.211 60.500 5.700 58.439 3.639 58.169 3.369
    2022−10−02T16:00:00 55.900 56.845 0.945 60.500 4.600 58.918 3.018 58.102 2.202
    2022−10−03T00:00:00 55.600 56.920 1.320 60.500 4.900 58.871 3.271 58.111 2.511
    2022−10−03T08:00:00 54.400 57.013 2.613 60.500 6.100 58.293 3.893 58.264 3.864
    2022−10−03T16:00:00 53.600 56.966 3.366 60.500 6.900 58.203 4.603 58.486 4.886
    2022−10−25T00:00:00 51.700 56.571 4.871 60.500 8.800 57.918 6.218 58.597 6.897
    2022−10−25T08:00:00 55.700 56.897 1.197 60.500 4.800 58.886 3.186 58.108 2.408
    2022−10−25T16:00:00 53.000 56.886 3.886 60.500 7.500 58.118 5.118 58.560 5.560
    2022−10−26T00:00:00 51.000 56.431 5.431 60.500 9.500 57.887 6.887 58.599 7.599
    2022−10−26T08:00:00 54.600 57.014 2.414 60.500 5.900 58.330 3.730 58.209 3.609
    下载: 导出CSV

    表  7  4种算法对花坪子边坡TP02−HPZ的预测结果

    Table  7.   Prediction results of TP02-HPZ of Huapingzi slope by four algorithms mm

    期号 实际监测值 GJO−MLP ACO−MLP GSA−MLP DE−MLP
    预测值 绝对误差 预测值 绝对误差 预测值 绝对误差 预测值 绝对误差
    111 53.800 53.754 0.046 54.000 0.200 53.655 0.145 53.716 0.084
    112 53.900 53.803 0.097 54.000 0.100 53.688 0.212 53.763 0.137
    113 53.900 53.803 0.097 54.000 0.100 53.688 0.212 53.763 0.137
    114 53.400 53.443 0.043 54.000 0.600 53.460 0.060 53.439 0.039
    115 53.300 53.341 0.041 54.000 0.700 53.391 0.091 53.339 0.039
    116 53.200 53.231 0.031 54.000 0.800 53.312 0.112 53.235 0.035
    117 53.000 53.021 0.021 54.000 1.000 53.120 0.120 53.016 0.016
    118 53.300 53.341 0.041 54.000 0.700 53.391 0.091 53.339 0.039
    119 53.200 53.231 0.031 54.000 0.800 53.312 0.112 53.235 0.035
    120 53.100 53.124 0.024 54.000 0.900 53.222 0.122 53.126 0.026
    下载: 导出CSV
  • [1] 田会,王忠鑫. 露天开采对环境的扰动行为及其控制技术[J]. 煤炭学报,2018,43(9):2416-2421. doi: 10.13225/j.cnki.jccs.2018.0928

    TIAN Hui,WANG Zhongxin. Disturbance behavior of open-pit mine on environment and its control technology[J]. Journal of China Coal Society,2018,43(9):2416-2421. doi: 10.13225/j.cnki.jccs.2018.0928
    [2] 杨朝云,李广悦. 地下转露天开采条件下某露天矿高陡边坡稳定性分析[J]. 有色金属工程,2019,9(3):89-97.

    YANG Chaoyun,LI Guangyue. Stability analysis of high-steep slope in an open-pit mine under the condition of transferring from underground into open pit mining[J]. Nonferrous Metals Engineering,2019,9(3):89-97.
    [3] 吕游. 露天矿高陡边坡变形失稳机理及防治措施[J]. 露天采矿技术,2022,37(6):18-21.

    LYU You. Instability mechanism and preventive measures of high and steep slope deformation in open-pit mine[J]. Opencast Mining Technology,2022,37(6):18-21.
    [4] 杨勇,张忠政,胡军,等. 基于随机权重法改进PSO−ELM的露天矿边坡稳定性分析[J]. 有色金属工程,2022,12(5):128-134. doi: 10.3969/j.issn.2095-1744.2022.05.016

    YANG Yong,ZHANG Zhongzheng,HU Jun,et al. Slope stability analysis of open-pit mine based on improved PSO-ELM with random weight method[J]. Nonferrous Metals Engineering,2022,12(5):128-134. doi: 10.3969/j.issn.2095-1744.2022.05.016
    [5] 曹兰柱,王珍,王东,等. 露天矿滑坡预警理论与方法研究[J]. 中国安全科学学报,2017,27(3):163-168.

    CAO Lanzhu,WANG Zhen,WANG Dong,et al. Research on theory and method of landslide early warning in open-pit mine[J]. China Safety Science Journal,2017,27(3):163-168.
    [6] YANG Yukun,ZHOU Wei,JISKANI I M,et al. Slope stability prediction method based on intelligent optimization and machine learning algorithms[J]. Sustainability,2023,15(2). DOI: 10.3390/su15021169.
    [7] 李柱,谢锋. 渗流−应力耦合作用下露天矿边坡稳定性研究[J]. 工矿自动化,2018,44(12):83-88.

    LI Zhu,XIE Feng. Research on slope stability of open-pit mine under coupled seepage-stress[J]. Industry and Mine Automation,2018,44(12):83-88.
    [8] 王文才,李俊鹏,王创业,等. 边帮煤采动影响下边坡变形演化特征及失稳形态分析[J]. 煤炭科学技术,2023,51(7):321-336. doi: 10.13199/j.cnki.cst.2022-0593

    WANG Wencai,LI Junpeng,WANG Chuangye,et al. Analysis of failure mode and deformation evolution characteristics and instability form of slopes under the influences of highwall mining[J]. Coal Science and Technology,2023,51(7):321-336. doi: 10.13199/j.cnki.cst.2022-0593
    [9] 刘善军,吴立新,毛亚纯,等. 天−空−地协同的露天矿边坡智能监测技术及典型应用[J]. 煤炭学报,2020,45(6):2265-2276. doi: 10.13225/j.cnki.jccs.zn20.0362

    LIU Shanjun,WU Lixin,MAO Yachun,et al. Spaceborne-airborne-ground collaborated intelligent monitoring on open-pit slope and its typical applications[J]. Journal of China Coal Society,2020,45(6):2265-2276. doi: 10.13225/j.cnki.jccs.zn20.0362
    [10] 王东,郭富宁,曹兰柱,等. 复合煤层露天矿软岩边坡参数逐阶段优化方法研究[J]. 煤炭科学技术,2019,47(10):75-80. doi: 10.13199/j.cnki.cst.2019.10.008

    WANG Dong,GUO Funing,CAO Lanzhu,et al. Study on stage-by-stage optimization method for slope parameters of soft rock open-pit mine in composite coal seam[J]. Coal Science and Technology,2019,47(10):75-80. doi: 10.13199/j.cnki.cst.2019.10.008
    [11] BAO Min,CHEN Zhonghui,ZHANG Lingfei,et al. Reliability analysis of prestressed anchors in rock slopes of open-pit mines[J]. Journal of Mountain Science,2022,19(7):2100-2110. doi: 10.1007/s11629-021-7224-2
    [12] 杨志勇,佟德君. 复杂地质条件下边坡参数优化及控制技术[J]. 露天采矿技术,2020,35(2):46-48,52.

    YANG Zhiyong,TONG Dejun. Slope parameters optimization and control technology under complex geological conditions[J]. Opencast Mining Technology,2020,35(2):46-48,52.
    [13] 刘玉凤,马明. 顺层蠕滑型露天矿土质边坡滑距预测方法研究[J]. 煤炭科学技术,2019,47(11):84-89.

    LIU Yufeng,MA Ming. Study on prediction method for sliding distance of soil slope bedding creeping in open pit mine[J]. Coal Science and Technology,2019,47(11):84-89.
    [14] 赵理想. 基于机器学习的露天煤矿边坡位移预测模型研究[D]. 徐州:中国矿业大学,2022.

    ZHAO Lixiang. Research on prediction model of surface coal mine slope displacement based on machine learning[D]. Xuzhou:China University of Mining and Technology,2022.
    [15] 康恩胜,赵泽熙,孟海东. 基于EEMD−HW−PSO−ELM耦合模型的排土场边坡位移预测模型[J]. 黄金科学技术,2022,30(4):594-602.

    KANG Ensheng,ZHAO Zexi,MENG Haidong. Displacement prediction of dump slope based on EEMD-HW-PSO-ELM coupling model[J]. Gold Science and Technology,2022,30(4):594-602.
    [16] 陈兰兰,杨雨云,肖海平,等. 基于GA−BP神经网络的露天矿边坡变形预测分析[J]. 有色金属科学与工程,2022,13(6):106-112. doi: 10.13264/j.cnki.ysjskx.2022.06.014

    CHEN Lanlan,YANG Yuyun,XIAO Haiping,et al. Prediction and analysis of open pit slope deformation based on a GA-BP neural network[J]. Nonferrous Metals Science and Engineering,2022,13(6):106-112. doi: 10.13264/j.cnki.ysjskx.2022.06.014
    [17] 张研,范聪,吴哲康,等. 基于PSO−RVM的矿山边坡变形量预测模型[J]. 金属矿山,2022(10):191-196. doi: 10.19614/j.cnki.jsks.202210027

    ZHANG Yan,FAN Cong,WU Zhekang,et al. Forecast model of mine slope deformation based on PSO-RVM[J]. Metal Mine,2022(10):191-196. doi: 10.19614/j.cnki.jsks.202210027
    [18] 金爱兵,张静辉,孙浩,等. 基于SSA−SVM的边坡失稳智能预测及预警模型[J]. 华中科技大学学报(自然科学版),2022,50(11):142-148.

    JIN Aibing,ZHANG Jinghui,SUN Hao,et al. Intelligent prediction and alert model of slope instability based on SSA-SVM[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition),2022,50(11):142-148.
    [19] 胡军,邱俊博,栾长庆,等. 基于IGWO−SVM的露天矿边坡变形预测[J]. 矿冶工程,2022,42(1):15-18.

    HU Jun,QIU Junbo,LUAN Changqing,et al. Deformation prediction based on IGWO-SVM for open-pit mine slopes[J]. Mining and Metallurgical Engineering,2022,42(1):15-18.
    [20] 李达,瞿伟,张勤,等. 融合多层感知机和优化支持向量回归的滑坡位移预测模型[J]. 武汉大学学报(信息科学版),2023,48(8):1380-1388.

    LI Da,QU Wei,ZHANG Qin,et al. Landslide displacement prediction model integrating multi-layer perceptron and optimized support vector regression[J]. Geomatics and Information Science of Wuhan University,2023,48(8):1380-1388.
    [21] 李建新. 基于小波支持向量机的边坡变形预测研究[D]. 南昌:江西理工大学,2020.

    LI Jianxin. Research on slope deformation prediction based on wavelet support vector machine[D]. Nanchang:Jiangxi University of Science and Technology,2020.
    [22] DEWI S K,UTAMA D M. A new hybrid whale optimization algorithm for green vehicle routing problem[J]. Systems Science & Control Engineering,2021,9(1):61-72.
    [23] CHOPRA N,ANSARI M M. Golden jackal optimization:a novel nature-inspired optimizer for engineering applications[J]. Expert Systems with Applications,2022,198. DOI: 10.1016/j.eswa.2022.116924.
    [24] YUAN Chao,MOAYEDI H. The performance of six neural-evolutionary classification techniques combined with multi-layer perception in two-layered cohesive slope stability analysis and failure recognition[J]. Engineering with Computers,2020,36:1705-1714. doi: 10.1007/s00366-019-00791-4
    [25] RATHER S A,BALA P S. A hybrid constriction coefficient-based particle swarm optimization and gravitational search algorithm for training multi-layer perceptron[J]. International Journal of Intelligent Computing and Cybernetics,2020,13(2):129-165. doi: 10.1108/IJICC-09-2019-0105
    [26] SAFARZADEH A,ZAJI A H,BONAKDARI H. 3D flow simulation of straight groynes using hybrid DE-based artificial intelligence methods[J]. Soft Computing,2019,23:3757-3777. doi: 10.1007/s00500-018-3037-9
    [27] 孙华芬. 尖山磷矿边坡监测及预测预报研究[D]. 昆明:昆明理工大学,2014.

    SUN Huafen. Research on monitoring and forecasting of Jianshan Phosphate Mine slope[D]. Kunming:Kunming University of Science and Technology,2014.
  • 加载中
图(7) / 表(7)
计量
  • 文章访问数:  924
  • HTML全文浏览量:  57
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-05
  • 修回日期:  2023-09-21
  • 网络出版日期:  2023-09-28

目录

    /

    返回文章
    返回