留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤矿井下水力压裂自动控制系统设计

刘波

刘波. 煤矿井下水力压裂自动控制系统设计[J]. 工矿自动化,2024,50(3):6-13.  doi: 10.13272/j.issn.1671-251x.2023060078
引用本文: 刘波. 煤矿井下水力压裂自动控制系统设计[J]. 工矿自动化,2024,50(3):6-13.  doi: 10.13272/j.issn.1671-251x.2023060078
LIU Bo. Design of automatic control system for underground hydraulic fracturing in coal mine[J]. Journal of Mine Automation,2024,50(3):6-13.  doi: 10.13272/j.issn.1671-251x.2023060078
Citation: LIU Bo. Design of automatic control system for underground hydraulic fracturing in coal mine[J]. Journal of Mine Automation,2024,50(3):6-13.  doi: 10.13272/j.issn.1671-251x.2023060078

煤矿井下水力压裂自动控制系统设计

doi: 10.13272/j.issn.1671-251x.2023060078
基金项目: 山东省重大科技创新工程项目 (2020CXGC011501)。
详细信息
    作者简介:

    刘波(1981—),男,河北邯郸人,工程师,硕士,主要从事煤矿智能化技术研究工作,E-mail:liubo@tdmarco.com

  • 中图分类号: TD323

Design of automatic control system for underground hydraulic fracturing in coal mine

  • 摘要: 分析指出目前煤矿井下水力压裂技术面临压裂泵输出压力和流量无法快速精确调节、远程安全监控效果及自动化水平有待提高等难题。设计了一种煤矿井下水力压裂自动控制系统。根据煤矿井下水力压裂工艺及系统构成,明确了控制系统关键技术为高压大流量压裂泵输出流量和压力的快速精确调节,远程高可靠性安全、高速实时监控,一键启停及图形化分析等。以KXH12本安型控制器为核心,搭配变频器、组合开关、监控主机、电动开度球阀等设备,以及光纤加CAN总线的双线冗余通信方案,研发了控制系统硬件,并编制了压裂泵控制器、水箱控制器及中央控制器软件,实现了压裂系统快速变流量注水、稳定保压及远程高速实时监控和报警等功能。在煤矿现场对水力压裂自动控制系统进行工业性试验,结果表明该系统压力控制精度为0.1 MPa,流量控制精度为0.1 m3/h,在连续完成14次压裂过程中,每次煤岩层开裂后均能实现较好的保压效果,且操作简单,安全性高,满足煤矿井下水力压裂工艺要求。

     

  • 图  1  煤矿井下水力压裂系统架构

    Figure  1.  Architecture of underground hydraulic fracturing system in coal mine

    图  2  煤矿井下水力压裂自动控制系统功能架构

    Figure  2.  Functional architecture of hydraulic fracturing automatic control system in underground coal mine

    图  3  控制系统整体设计方案

    Figure  3.  The total design schema of the control system

    图  4  控制系统硬件结构设计

    Figure  4.  Hardware structure design of the control system

    图  5  控制系统软件设计方案

    Figure  5.  Software design scheme of the control system

    图  6  压裂泵控制器程序流程

    Figure  6.  Program flow of fracturing pump controller

    图  7  水箱控制器程序流程

    Figure  7.  Program flow of water tank controller

    图  8  中央控制器程序流程

    Figure  8.  Program flow of central controller

    图  9  压裂压力曲线

    Figure  9.  Fracturing pressure curve

    图  10  压裂流量曲线

    Figure  10.  Fracturing flow curve

    图  11  累计注水量曲线

    Figure  11.  Water injection accumulation curve

  • [1] 田雨,谢梅英. 新型大功率电动压裂泵组的研制[J]. 石油机械,2017,45(4):94-97.

    TIAN Yu,XIE Meiying. Development of new-type superpower electric fracturing pump skid[J]. China Petroleum Machinery,2017,45(4):94-97.
    [2] 丁小宁,程兴民,李敏,等. 超大功率压裂泵电控系统研发[J]. 石油和化工设备,2023,26(1):26-29.

    DING Xiaoning,CHENG Xingmin,LI Min,et al. Development of electric control system for super power fracturing pump[J]. Petro & Chemical Equipment,2023,26(1):26-29.
    [3] 王万帅. 压裂机组仪表车的监控系统研究与设计[D]. 兰州:兰州理工大学,2014.

    WANG Wanshuai. Research and design of fracturing unit data van monitoring system[D]. Lanzhou:Lanzhou University of Technology,2014.
    [4] 赵志川. 压裂装备泵注系统智能故障诊断方法研究[D]. 北京:北京建筑大学,2022.

    ZHAO Zhichuan. Research on intelligent fault diagnosis method of fracturing equipment pumping system[D]. Beijing:Beijing University of Architecture,2022.
    [5] 夏梁志,刘雄,丁小宁,等. 5500HP新型大功率电驱压裂系统的研制[J]. 石油和化工设备,2021,24(1):8-11,15.

    XIA Liangzhi,LIU Xiong,DING Xiaoning,et al. Development of 5500HP new-type high power electric fracturing system[J]. Petro & Chemical Equipment,2021,24(1):8-11,15.
    [6] 苏文昌. 基于PLC的压裂车组控制系统研究与实现[D]. 兰州:兰州交通大学,2020.

    SU Wenchang. Research and implementation of fracturing truck control system based on PLC[D]. Lanzhou:Lanzhou Jiaotong University,2020.
    [7] 苟军善,郭海军,刘珀,等. 4500马力新型电驱动压裂泵电机的研制[J]. 石油和化工设备,2018,21(11):5-10.

    GOU Junshan,GUO Haijun,LIU Po,et al. Development of new type of electric fracturing pump motor with 4500 horsepower[J]. Petro & Chemical Equipment,2018,21(11):5-10.
    [8] 苏宏彪. 2500型压裂车的电气自动控制系统设计与应用[J]. 内燃机与配件,2017(1):15-18.

    SU Hongbiao. Design and application of electrical automatic control system for 2500 fracturing truck[J]. Internal Combustion Engine & Parts,2017(1):15-18.
    [9] 张杰. 2500型压裂泵车自动控制系统功能设计[J]. 长江大学学报(自科版),2016,13(29):70-72,7.

    ZHANG Jie. Design of automatic control system for 2500 fracturing pump truck[J]. Journal of Yangtze University(Natural Science Edition),2016,13(29):70-72,7.
    [10] 徐峰,杨春和,郭印同,等. 水力加砂压裂试验装置的研制及应用[J]. 岩土工程学报,2016,38(1):187-192.

    XU Feng,YANG Chunhe,GUO Yintong,et al. Development and application of experimental apparatus of hydraulic sand fracturing[J]. Chinese Journal of Geotechnical Engineering,2016,38(1):187-192.
    [11] 张浩,彭小强,程云华. 基于PLC的矿用压裂泵组控制系统研发[J]. 电气防爆,2014(4):41-44.

    ZHANG Hao,PENG Xiaoqiang,CHENG Yunhua. Design of control system for underground fracturing pump based on PLC[J]. Electric Explosion Protection,2014(4):41-44.
    [12] 陈永军. 页岩气大型压裂机组网络控制系统及其设计[J]. 仪器仪表与分析监测,2014(4):10-13.

    CHEN Yongjun. Large shale gas fracturing units and network control system design[J]. Instrumentation Analysis Monitoring,2014(4):10-13.
    [13] 雷刚,王启中,许亚彬,等. 2000型海洋压裂橇组的研制[J]. 石油机械,2011,39(7):22-24,6.

    LEI Gang,WANG Qizhong,XU Yabin,et al. Research on model 2000 offshore fracture skid assembly[J]. China Petroleum Machinery,2011,39(7):22-24,6.
    [14] 陈冬冬,孙四清,张俭,等. 井下定向长钻孔水力压裂煤层增透技术体系与工程实践[J]. 煤炭科学技术,2020,48(10):84-89.

    CHEN Dongdong,SUN Siqing,ZHANG Jian,et al. Technical system and engineering practice of coal seam permeability improvement through underground directional long borehole hydraulic fracturing[J]. Coal Science and Technology,2020,48(10):84-89.
    [15] 龙威成,赵乐凯,陈冬冬,等. 顺煤层定向长钻孔水力压裂煤层增透技术及试验研究[J]. 河南理工大学学报(自然科学版),2019,38(3):10-15.

    LONG Weicheng,ZHAO Lekai,CHEN Dongdong,et al. Experimental study on coal seam permeability enhancement by directional long borehole hydraulic fracturing along seam direction[J]. Journal of Henan Polytechnic University(Natural Science),2019,38(3):10-15.
    [16] 张俭,刘乐,赵继展,等. 煤层顶板定向长钻孔水力加砂分段压裂技术与装备[J]. 煤田地质与勘探,2022,50(8):37-44.

    ZHANG Jian,LIU Le,ZHAO Jizhan,et al. Research on hydraulic fracturing technology and equipment of directional long drilling with sand in coal seam roof[J]. Coal Geology & Exploration,2022,50(8):37-44.
    [17] 张永将,陆占金. 超高压水力割缝煤层增透成套装置研制及应用[J]. 煤炭科学技术,2020,48(10):97-104.

    ZHANG Yongjiang,LU Zhanjin. Development and application of complete set of anti-reflection equipment for ultra-high pressure hydraulic seam cutting[J]. Coal Science and Technology,2020,48(10):97-104.
    [18] 姚壮壮,林府进,武文宾,等. 采煤工作面顺层钻孔分段水力压裂增渗试验[J]. 煤矿安全,2021,52(3):9-13.

    YAO Zhuangzhuang,LIN Fujin,WU Wenbin,et al. Permeability enhancement test of staged hydraulic fracturing of bedding drilling borehole in working face[J]. Safety in Coal Mines,2021,52(3):9-13.
    [19] 周俊杰,张尚斌,敖锋,等. 井下高压水力压裂泵组的研发及应用[J]. 矿山机械,2017,45(8):13-15.

    ZHOU Junjie,ZHANG Shangbin,AO Feng,et al. Development and application of pump group for underground high-pressure hydraulic fracturing[J]. Mining & Processing Equipment,2017,45(8):13-15.
    [20] 康红普,冯彦军,张震,等. 煤矿井下定向钻孔水力压裂岩层控制技术及应用[J]. 煤炭科学技术,2023,51(1):31-44.

    KANG Hongpu,FENG Yanjun,ZHANG Zhen,et al. Hydraulic fracturing technology with directional boreholes for strata control in underground coal mines and its application[J]. Coal Science and Technology,2023,51(1):31-44.
    [21] 康红普,冯彦军. 煤矿井下水力压裂技术及在围岩控制中的应用[J]. 煤炭科学技术,2017,45(1):1-9.

    KANG Hongpu,FENG Yanjun. Hydraulic fracturing technology and its applications in strata control in underground coal mines[J]. Coal Science and Technology,2017,45(1):1-9.
    [22] 袁亮,林柏泉,杨威. 我国煤矿水力化技术瓦斯治理研究进展及发展方向[J]. 煤炭科学技术,2015,43(1):45-49.

    YUAN Liang,LIN Baiquan,YANG Wei. Research progress and development direction of gas control with mine hydraulic technology in China coal mine[J]. Coal Science and Technology,2015,43(1):45-49.
    [23] 李然,刘波,王大龙,等. 工作面智能供液技术进展与应用[J]. 煤炭科学技术,2022,50(12):247-253.

    LI Ran,LIU Bo,WANG Dalong,et al. Progress and application of intelligent fluid supply technology in working face[J]. Coal Science and Technology,2022,50(12):247-253.
  • 加载中
图(11)
计量
  • 文章访问数:  132
  • HTML全文浏览量:  34
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-20
  • 修回日期:  2024-03-15
  • 网络出版日期:  2024-04-11

目录

    /

    返回文章
    返回