留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

矿井井下非均匀照度图像增强算法

苗作华 赵成诚 朱良建 刘代文 陈澳光

苗作华,赵成诚,朱良建,等. 矿井井下非均匀照度图像增强算法[J]. 工矿自动化,2023,49(11):92-99.  doi: 10.13272/j.issn.1671-251x.2023060032
引用本文: 苗作华,赵成诚,朱良建,等. 矿井井下非均匀照度图像增强算法[J]. 工矿自动化,2023,49(11):92-99.  doi: 10.13272/j.issn.1671-251x.2023060032
MIAO Zuohua, ZHAO Chengcheng, ZHU Liangjian, et al. Image enhancement algorithm for non-uniform illumination in underground mines[J]. Journal of Mine Automation,2023,49(11):92-99.  doi: 10.13272/j.issn.1671-251x.2023060032
Citation: MIAO Zuohua, ZHAO Chengcheng, ZHU Liangjian, et al. Image enhancement algorithm for non-uniform illumination in underground mines[J]. Journal of Mine Automation,2023,49(11):92-99.  doi: 10.13272/j.issn.1671-251x.2023060032

矿井井下非均匀照度图像增强算法

doi: 10.13272/j.issn.1671-251x.2023060032
基金项目: 国家自然科学基金项目(41071242,41971237);教育部产学合作协同育人项目(202102136008)。
详细信息
    作者简介:

    苗作华(1974—),男,湖北武汉人,教授,博士,硕士研究生导师,研究方向为人工智能与智慧矿山,E-mail:z837089200@wust.edu.cn

  • 中图分类号: TD67

Image enhancement algorithm for non-uniform illumination in underground mines

  • 摘要: 矿井井下视频采集过程中由于照明系统分布不均匀、环境中存在大量粉尘和雾气,导致监控画面图像存在局部光线过曝、局部亮度不足、对比度低和边缘信息弱等问题。针对上述问题,提出了一种矿井井下非均匀照度图像增强算法。该算法基于Retinex−Net网络结构改进,具体包括非均匀光照抑制模块(NLSM)、光照分解模块(LDM)和图像增强模块(IEM)3个部分:NLSM对图像中人工光源局部非均匀光照进行抑制;LDM将图像分解为光照层和反射层;IEM对图像光照层增强,经伽马校正,最终得到增强图像。在NLSM和LDM中均采用Resnet作为网络基础架构,并顺序引入了卷积注意力机制中通道注意力模块和空间注意力模块,以增强对图像光照特征关注度和特征选择的效率。实验结果表明:① 选取MBLLEN,RUAS,zeroDCE,zeroDCE++,Retinex−Net,KinD++及非均匀照度图像增强算法对多种场景(井下运输环境场景、单光源巷道场景、多光源巷道场景、矿石场景)图像进行增强处理及定性分析,分析结果指出非均匀照度图像增强算法能够避免人工光源区域的过度增强,未在光源区域产生晕染和模糊现象,不易产生色偏,对比度适中,画面视觉效果更真实。② 选取信息熵(IE)、平均梯度(AG)、标准差(SD)、自然图像质量评价指标 (NIQE)、结构相似性(SSIM)和峰值信噪比(PSNR)作为评价指标,定量比较图像增强画面质量。结果表明非均匀照度图像增强算法在多种场景下处于相对领先地位。③ 消融实验结果表明,非均匀照度图像增强算法在NIQE,SSIM,PSNR这3个评价指标上均获得了最优结果。

     

  • 图  1  Retinex−Net网络结构

    Figure  1.  Retinex-Net network structure

    图  2  非均匀照度图像增强算法整体网络结构

    Figure  2.  Overall network structure of the non-uniform illumination image enhancement algorithm

    图  3  Layers结构

    Figure  3.  Layers structure

    图  4  CBAM结构

    Figure  4.  CBAM structure

    图  5  BasicBlock 结构

    Figure  5.  BasicBlock structure

    图  6  不同算法增强结果及局部放大图

    Figure  6.  Enhancement results and local enlarged images of different algorithms

    表  1  不同算法评价指标结果

    Table  1.   Evaluation index results of different algorithms

    场景 算法 IE AG SD NIQE SSIM PSNR 场景 算法 IE AG SD NIQE SSIM PSNR
    1 MBLLEN 6.17 60.09 60.68 6.86 0.48 12.62 3 MBLLEN 6.69 32.1 62.65 4.74 0.55 11.36
    RUAS 4.57 41.19 83.71 6.16 0.6 15.22 RUAS 5.46 27.22 54.38 4.54 0.67 11.45
    zeroDCE 5.26 48.65 72.17 5.41 0.61 15.08 zeroDCE 5.99 38.04 49.01 3.96 0.45 15.49
    zeroDCE++ 5.28 48.83 76.09 5.74 0.6 15 zeroDCE++ 6.05 40.44 52.41 4.02 0.4 14.71
    Retinex−Net 6.12 63.43 61.39 4.8 0.23 12.35 Retinex−Net 6.48 51.16 47.05 4.82 0.22 10.76
    KinD++ 5.73 56.52 70.77 5.15 0.59 15.18 KinD++ 6.18 52.7 50.75 4.52 0.4 14.06
    本文算法 6.24 67.68 70.37 4.7 0.57 15.27 本文算法 7.32 54.56 49.65 3.88 0.56 17.5
    2 MBLLEN 6.7 34.92 46.96 5.04 0.36 11.43 4 MBLLEN 7.43 56.77 64.38 3.88 0.43 11.74
    RUAS 5.23 28.59 52.28 5.07 0.7 16.84 RUAS 6.44 86.72 83.13 4.17 0.58 11.91
    zeroDCE 5.59 38.06 48.07 4.68 0.5 16.14 zeroDCE 6.82 80.49 60.01 3.72 0.49 11.86
    zeroDCE++ 5.73 39.34 52.71 4.76 0.43 14.57 zeroDCE++ 6.98 81.57 67.97 3.56 0.47 12.29
    Retinex−Net 6.36 55.8 47.17 4.77 0.14 11.44 Retinex−Net 7.18 116.6 53.61 4.72 0.24 10.32
    KinD++ 6.02 50.15 51.35 4.65 0.46 14.3 KinD++ 7.05 105.6 59.59 3.93 0.44 12.12
    本文算法 7.31 31.49 63.34 4.13 0.56 11.83 本文算法 7.71 55.7 55.7 3.29 0.28 12.78
    下载: 导出CSV

    表  2  消融实验

    Table  2.   Ablation experiment

    算法 IE AG SD NIQE SSIM PSNR
    算法1 6.53 71.84 52.27 4.78 0.21 11.23
    算法2 6.35 62.47 56.49 4.59 0.48 13.65
    算法3 7.02 60.70 62.02 4.13 0.48 13.85
    本文算法 7.15 51.69 60.09 4.00 0.49 14.19
    下载: 导出CSV
  • [1] 吴建雷. 矿井下图像增强与目标跟踪研究[D]. 太原:太原理工大学,2021.

    WU Jianlei. Research on image enhancement and target tracking in underground mine[D]. Taiyuan:Taiyuan University of Technology,2021.
    [2] 刘晓阳,乔通,乔智. 基于双边滤波和Retinex算法的矿井图像增强方法[J]. 工矿自动化,2017,43(2):49-54. doi: 10.13272/j.issn.1671-251x.2017.02.011

    LIU Xiaoyang,QIAO Tong,QIAO Zhi. Image enhancement method of mine based on bilateral filtering and Retinex algorithm[J]. Industry and Mine Automation,2017,43(2):49-54. doi: 10.13272/j.issn.1671-251x.2017.02.011
    [3] 唐守锋,史可,仝光明,等. 一种矿井低照度图像增强算法[J]. 工矿自动化,2021,47(10):32-36. doi: 10.13272/j.issn.1671-251x.2021060052

    TANG Shoufeng,SHI Ke,TONG Guangming,et al. A mine low illumination image enhancement algorithm[J]. Industry and Mine Automation,2021,47(10):32-36. doi: 10.13272/j.issn.1671-251x.2021060052
    [4] 阮顺领,刘丹洋,白宝军,等. 基于自适应MSRCP算法的煤矿井下图像增强方法[J]. 矿业研究与开发,2021,41(11):186-192. doi: 10.13827/j.cnki.kyyk.2021.11.030

    RUAN Shunling,LIU Danyang,BAI Baojun,et al. Image enhancement method for underground coal mine based on the adaptive MSRCP algorithm[J]. Mining Research and Development,2021,41(11):186-192. doi: 10.13827/j.cnki.kyyk.2021.11.030
    [5] 许新宇. 光照不均图像的超分辨率重建与空间融合增强算法研究[D]. 西安:西安科技大学,2020.

    XU Xinyu. Research on super-resolution reconstruction and spatial fusion enhancement algorithm of uneven light image[D]. Xi'an:Xi'an University of Science and Technology,2020.
    [6] 乔佳伟,贾运红. Retinex算法在煤矿井下图像增强的应用研究[J]. 煤炭技术,2022,41(3):193-195.

    QIAO Jiawei,JIA Yunhong. Research on application of Retinex algorithm in image enhancement in coal mine[J]. Coal Technology,2022,41(3):193-195.
    [7] 李星. 低照度彩色图像CLAHE增强算法研究[D]. 哈尔滨:哈尔滨理工大学,2021.

    LI Xing. Research on CLAHE enhancement algorithm for low illuminance color image[D]. Harbin:Harbin University of Science and Technology,2021.
    [8] SAAD N H,ISA N A M,SALEH H M. Nonlinear exposure intensity based modification histogram equalization for non-uniform illumination image enhancement[J]. IEEE Access,2021,9:93033-93061. doi: 10.1109/ACCESS.2021.3092643
    [9] THEPADE S D,PARDHI P M. Contrast enhancement with brightness preservation of low light images using a blending of CLAHE and BPDHE histogram equalization methods[J]. International Journal of Information Technology,2022,14(6):3047-3056. doi: 10.1007/s41870-022-01054-0
    [10] 管萍. 基于Retinex和卷积神经网络的低照度图像增强方法研究[D]. 芜湖:安徽工程大学,2022.

    GUAN Ping. Research on low illumination image enhancement method based on Retinex and convolutional neural network[D]. Wuhu:Anhui Polytechnic University,2022.
    [11] 吴佳丽. 基于Retinex理论的非均匀光照图像增强算法研究[D]. 南京:南京邮电大学,2022.

    WU Jiali. Research on image enhancement algorithms under non-uniform illumination conditions based on Retinex theory[D]. Nanjing:Nanjing University of Posts and Telecommunications,2022.
    [12] 赵征鹏,李俊钢,普园媛. 基于卷积神经网络的Retinex低照度图像增强[J]. 计算机科学,2022,49(6):199-209. doi: 10.11896/jsjkx.210400092

    ZHAO Zhengpeng,LI Jungang,PU Yuanyuan. Low-light image enhancement based on retinex theory by convolutional neural network[J]. Computer Science,2022,49(6):199-209. doi: 10.11896/jsjkx.210400092
    [13] 武亚红. 不均匀低照度低质图像增强算法研究[D]. 南京:南京邮电大学,2021.

    WU Yahong. Study of algorithms for non-uniform low-light low-quality image enhancement[D]. Nanjing:Nanjing University of Posts and Telecommunications,2021.
    [14] 姜雪松. 不良照明条件下的夜晚图像增强方法研究[D]. 哈尔滨:哈尔滨工业大学,2020.

    JIANG Xuesong. Research on nighttime image under poor lighting conditions enhancement methods[D]. Harbin:Harbin Institute of Technology,2020.
    [15] WEI Chen,WANG Wenjing,YANG Wenhan,et al. Deep Retinex decomposition for low-light enhancement[J]. 2018. DOI: 10.48550/arXiv.1808.04560.
    [16] WU Zifeng,SHEN Chunhua,ANTON V D H. Wider or deeper:revisiting the resnet model for visual recognition[J]. Pattern Recognition:The Journal of the Pattern Recognition Society,2019,90:119-133. doi: 10.1016/j.patcog.2019.01.006
    [17] WOO H,PARK J,LEE J,et al. CBAM:convolutional block attention module[C]. European Conference on Computer Vision,Munich,2018:3-19.
    [18] LYU Feifan,LU Feng,WU Jianhua,et al. MBLLEN:low-light image/video enhancement using CNNs[C]. British Machine Vision Conference,Newcastle,2018,220(1):4.
    [19] LIU Risheng,MA Long,ZHANG Jia'ao,et al. Retinex-inspired unrolling with cooperative prior architecture search for low-light image enhancement[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Kuala Lumpur,2021:10561-10570.
    [20] GUO Chunle,LI Chongyi,GUO Jichang,et al. Zero-reference deep curve estimation for low-light image enhancement[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:1780-1789.
    [21] LI Chongyi,GUO Chunle,LOY C C. Learning to enhance low-light image via zero-reference deep curve estimation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2021,44(8):4225-4238.
    [22] ZHANG Yonghua,GUO Xiaojie,MA Jiayi,et al. Beyond brightening low-light images[J]. International Journal of Computer Vision,2021,129:1013-1037. doi: 10.1007/s11263-020-01407-x
    [23] MITTAL A,SOUNDARARAJAN R,BOVIK A C. Making a "completely blind" image quality analyzer[J]. IEEE Signal Processing Letters,2012,20(3):209-212.
    [24] SETIADI D R I M. PSNR vs SSIM:imperceptibility quality assessment for image steganography[J]. Multimedia Tools and Applications,2021,80(6):8423-8444. doi: 10.1007/s11042-020-10035-z
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  182
  • HTML全文浏览量:  96
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-10
  • 修回日期:  2023-11-05
  • 网络出版日期:  2023-11-15

目录

    /

    返回文章
    返回