Image enhancement algorithm for non-uniform illumination in underground mines
-
摘要: 矿井井下视频采集过程中由于照明系统分布不均匀、环境中存在大量粉尘和雾气,导致监控画面图像存在局部光线过曝、局部亮度不足、对比度低和边缘信息弱等问题。针对上述问题,提出了一种矿井井下非均匀照度图像增强算法。该算法基于Retinex−Net网络结构改进,具体包括非均匀光照抑制模块(NLSM)、光照分解模块(LDM)和图像增强模块(IEM)3个部分:NLSM对图像中人工光源局部非均匀光照进行抑制;LDM将图像分解为光照层和反射层;IEM对图像光照层增强,经伽马校正,最终得到增强图像。在NLSM和LDM中均采用Resnet作为网络基础架构,并顺序引入了卷积注意力机制中通道注意力模块和空间注意力模块,以增强对图像光照特征关注度和特征选择的效率。实验结果表明:① 选取MBLLEN,RUAS,zeroDCE,zeroDCE++,Retinex−Net,KinD++及非均匀照度图像增强算法对多种场景(井下运输环境场景、单光源巷道场景、多光源巷道场景、矿石场景)图像进行增强处理及定性分析,分析结果指出非均匀照度图像增强算法能够避免人工光源区域的过度增强,未在光源区域产生晕染和模糊现象,不易产生色偏,对比度适中,画面视觉效果更真实。② 选取信息熵(IE)、平均梯度(AG)、标准差(SD)、自然图像质量评价指标 (NIQE)、结构相似性(SSIM)和峰值信噪比(PSNR)作为评价指标,定量比较图像增强画面质量。结果表明非均匀照度图像增强算法在多种场景下处于相对领先地位。③ 消融实验结果表明,非均匀照度图像增强算法在NIQE,SSIM,PSNR这3个评价指标上均获得了最优结果。Abstract: Due to the non-uniform distribution of lighting systems and the presence of a large amount of dust and mist in the environment during the underground video collection process, there are problems with local light overexposure, insufficient brightness, low contrast, and weak edge information in the monitoring image. In order to solve the above problems, an image enhancement algorithm for non-uniform illumination in underground mines is proposed. This algorithm is based on the improvement of Retinex-Net network structure, which includes three parts: non-uniform illumination suppression module (NLSM), illumination decomposition module (LDM), and image enhancement module (IEM). Among them, NLSM suppresses local non-uniform illumination of artificial light sources in the image. LDM decomposes the image into light and reflection layers. IEM enhances the illumination layer of the image, undergoes gamma correction, and ultimately obtains the enhanced image. Resnet is adopted as the infrastructure of the network in both NLSM and LDM. The channel attention module and spatial attention module in the convolutional attention mechanism are sequentially introduced to enhance the attention to image lighting features and the efficiency of feature selection. The experimental results show the following points. ① MBLLEN, RUAS, zeroDCE, zeroDCE++, Retinex−Net, KinD++, and non-uniform illumination image enhancement algorithms are selected to enhance and qualitatively analyze images in various scenarios (underground transportation environment, single light source roadway, multi light source roadway, ore scenario). The analysis results indicate that non-uniform illumination image enhancement algorithms can avoid excessive enhancement of artificial light source areas. There is no halo or blurring phenomenon in the light source area, and colors are not prone to color deviation. The contrast is moderate, and the visual effect of the image is more realistic. ② The information entropy (IE), average gradient (AG), standard deviation (SD), naturalness image quality evaluator (NIQE), structural similarity (SSIM), and peak signal-to-noise ratio (PSNR) are selected as evaluation indicators to quantitatively compare the quality of image enhancement images. The non-uniform illumination image enhancement algorithm is also in a relatively leading position in various scenarios. ③ The ablation experimental results show the non-uniform illumination image enhancement algorithm achieves optimal results on three evaluation indicators: NIQE, SSIM, and PSNR.
-
表 1 不同算法评价指标结果
Table 1. Evaluation index results of different algorithms
场景 算法 IE AG SD NIQE SSIM PSNR 场景 算法 IE AG SD NIQE SSIM PSNR 1 MBLLEN 6.17 60.09 60.68 6.86 0.48 12.62 3 MBLLEN 6.69 32.1 62.65 4.74 0.55 11.36 RUAS 4.57 41.19 83.71 6.16 0.6 15.22 RUAS 5.46 27.22 54.38 4.54 0.67 11.45 zeroDCE 5.26 48.65 72.17 5.41 0.61 15.08 zeroDCE 5.99 38.04 49.01 3.96 0.45 15.49 zeroDCE++ 5.28 48.83 76.09 5.74 0.6 15 zeroDCE++ 6.05 40.44 52.41 4.02 0.4 14.71 Retinex−Net 6.12 63.43 61.39 4.8 0.23 12.35 Retinex−Net 6.48 51.16 47.05 4.82 0.22 10.76 KinD++ 5.73 56.52 70.77 5.15 0.59 15.18 KinD++ 6.18 52.7 50.75 4.52 0.4 14.06 本文算法 6.24 67.68 70.37 4.7 0.57 15.27 本文算法 7.32 54.56 49.65 3.88 0.56 17.5 2 MBLLEN 6.7 34.92 46.96 5.04 0.36 11.43 4 MBLLEN 7.43 56.77 64.38 3.88 0.43 11.74 RUAS 5.23 28.59 52.28 5.07 0.7 16.84 RUAS 6.44 86.72 83.13 4.17 0.58 11.91 zeroDCE 5.59 38.06 48.07 4.68 0.5 16.14 zeroDCE 6.82 80.49 60.01 3.72 0.49 11.86 zeroDCE++ 5.73 39.34 52.71 4.76 0.43 14.57 zeroDCE++ 6.98 81.57 67.97 3.56 0.47 12.29 Retinex−Net 6.36 55.8 47.17 4.77 0.14 11.44 Retinex−Net 7.18 116.6 53.61 4.72 0.24 10.32 KinD++ 6.02 50.15 51.35 4.65 0.46 14.3 KinD++ 7.05 105.6 59.59 3.93 0.44 12.12 本文算法 7.31 31.49 63.34 4.13 0.56 11.83 本文算法 7.71 55.7 55.7 3.29 0.28 12.78 表 2 消融实验
Table 2. Ablation experiment
算法 IE AG SD NIQE SSIM PSNR 算法1 6.53 71.84 52.27 4.78 0.21 11.23 算法2 6.35 62.47 56.49 4.59 0.48 13.65 算法3 7.02 60.70 62.02 4.13 0.48 13.85 本文算法 7.15 51.69 60.09 4.00 0.49 14.19 -
[1] 吴建雷. 矿井下图像增强与目标跟踪研究[D]. 太原:太原理工大学,2021.WU Jianlei. Research on image enhancement and target tracking in underground mine[D]. Taiyuan:Taiyuan University of Technology,2021. [2] 刘晓阳,乔通,乔智. 基于双边滤波和Retinex算法的矿井图像增强方法[J]. 工矿自动化,2017,43(2):49-54. doi: 10.13272/j.issn.1671-251x.2017.02.011LIU Xiaoyang,QIAO Tong,QIAO Zhi. Image enhancement method of mine based on bilateral filtering and Retinex algorithm[J]. Industry and Mine Automation,2017,43(2):49-54. doi: 10.13272/j.issn.1671-251x.2017.02.011 [3] 唐守锋,史可,仝光明,等. 一种矿井低照度图像增强算法[J]. 工矿自动化,2021,47(10):32-36. doi: 10.13272/j.issn.1671-251x.2021060052TANG Shoufeng,SHI Ke,TONG Guangming,et al. A mine low illumination image enhancement algorithm[J]. Industry and Mine Automation,2021,47(10):32-36. doi: 10.13272/j.issn.1671-251x.2021060052 [4] 阮顺领,刘丹洋,白宝军,等. 基于自适应MSRCP算法的煤矿井下图像增强方法[J]. 矿业研究与开发,2021,41(11):186-192. doi: 10.13827/j.cnki.kyyk.2021.11.030RUAN Shunling,LIU Danyang,BAI Baojun,et al. Image enhancement method for underground coal mine based on the adaptive MSRCP algorithm[J]. Mining Research and Development,2021,41(11):186-192. doi: 10.13827/j.cnki.kyyk.2021.11.030 [5] 许新宇. 光照不均图像的超分辨率重建与空间融合增强算法研究[D]. 西安:西安科技大学,2020.XU Xinyu. Research on super-resolution reconstruction and spatial fusion enhancement algorithm of uneven light image[D]. Xi'an:Xi'an University of Science and Technology,2020. [6] 乔佳伟,贾运红. Retinex算法在煤矿井下图像增强的应用研究[J]. 煤炭技术,2022,41(3):193-195.QIAO Jiawei,JIA Yunhong. Research on application of Retinex algorithm in image enhancement in coal mine[J]. Coal Technology,2022,41(3):193-195. [7] 李星. 低照度彩色图像CLAHE增强算法研究[D]. 哈尔滨:哈尔滨理工大学,2021.LI Xing. Research on CLAHE enhancement algorithm for low illuminance color image[D]. Harbin:Harbin University of Science and Technology,2021. [8] SAAD N H,ISA N A M,SALEH H M. Nonlinear exposure intensity based modification histogram equalization for non-uniform illumination image enhancement[J]. IEEE Access,2021,9:93033-93061. doi: 10.1109/ACCESS.2021.3092643 [9] THEPADE S D,PARDHI P M. Contrast enhancement with brightness preservation of low light images using a blending of CLAHE and BPDHE histogram equalization methods[J]. International Journal of Information Technology,2022,14(6):3047-3056. doi: 10.1007/s41870-022-01054-0 [10] 管萍. 基于Retinex和卷积神经网络的低照度图像增强方法研究[D]. 芜湖:安徽工程大学,2022.GUAN Ping. Research on low illumination image enhancement method based on Retinex and convolutional neural network[D]. Wuhu:Anhui Polytechnic University,2022. [11] 吴佳丽. 基于Retinex理论的非均匀光照图像增强算法研究[D]. 南京:南京邮电大学,2022.WU Jiali. Research on image enhancement algorithms under non-uniform illumination conditions based on Retinex theory[D]. Nanjing:Nanjing University of Posts and Telecommunications,2022. [12] 赵征鹏,李俊钢,普园媛. 基于卷积神经网络的Retinex低照度图像增强[J]. 计算机科学,2022,49(6):199-209. doi: 10.11896/jsjkx.210400092ZHAO Zhengpeng,LI Jungang,PU Yuanyuan. Low-light image enhancement based on retinex theory by convolutional neural network[J]. Computer Science,2022,49(6):199-209. doi: 10.11896/jsjkx.210400092 [13] 武亚红. 不均匀低照度低质图像增强算法研究[D]. 南京:南京邮电大学,2021.WU Yahong. Study of algorithms for non-uniform low-light low-quality image enhancement[D]. Nanjing:Nanjing University of Posts and Telecommunications,2021. [14] 姜雪松. 不良照明条件下的夜晚图像增强方法研究[D]. 哈尔滨:哈尔滨工业大学,2020.JIANG Xuesong. Research on nighttime image under poor lighting conditions enhancement methods[D]. Harbin:Harbin Institute of Technology,2020. [15] WEI Chen,WANG Wenjing,YANG Wenhan,et al. Deep Retinex decomposition for low-light enhancement[J]. 2018. DOI: 10.48550/arXiv.1808.04560. [16] WU Zifeng,SHEN Chunhua,ANTON V D H. Wider or deeper:revisiting the resnet model for visual recognition[J]. Pattern Recognition:The Journal of the Pattern Recognition Society,2019,90:119-133. doi: 10.1016/j.patcog.2019.01.006 [17] WOO H,PARK J,LEE J,et al. CBAM:convolutional block attention module[C]. European Conference on Computer Vision,Munich,2018:3-19. [18] LYU Feifan,LU Feng,WU Jianhua,et al. MBLLEN:low-light image/video enhancement using CNNs[C]. British Machine Vision Conference,Newcastle,2018,220(1):4. [19] LIU Risheng,MA Long,ZHANG Jia'ao,et al. Retinex-inspired unrolling with cooperative prior architecture search for low-light image enhancement[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Kuala Lumpur,2021:10561-10570. [20] GUO Chunle,LI Chongyi,GUO Jichang,et al. Zero-reference deep curve estimation for low-light image enhancement[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:1780-1789. [21] LI Chongyi,GUO Chunle,LOY C C. Learning to enhance low-light image via zero-reference deep curve estimation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2021,44(8):4225-4238. [22] ZHANG Yonghua,GUO Xiaojie,MA Jiayi,et al. Beyond brightening low-light images[J]. International Journal of Computer Vision,2021,129:1013-1037. doi: 10.1007/s11263-020-01407-x [23] MITTAL A,SOUNDARARAJAN R,BOVIK A C. Making a "completely blind" image quality analyzer[J]. IEEE Signal Processing Letters,2012,20(3):209-212. [24] SETIADI D R I M. PSNR vs SSIM:imperceptibility quality assessment for image steganography[J]. Multimedia Tools and Applications,2021,80(6):8423-8444. doi: 10.1007/s11042-020-10035-z