留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

智能工作面液压支架电液控制系统端头控制器设计

张晓海 田慕琴 张敏龙 宋建成 许春雨 聂鸿霖 杨永锴

张晓海,田慕琴,张敏龙,等. 智能工作面液压支架电液控制系统端头控制器设计[J]. 工矿自动化,2023,49(8):30-36.  doi: 10.13272/j.issn.1671-251x.2023060031
引用本文: 张晓海,田慕琴,张敏龙,等. 智能工作面液压支架电液控制系统端头控制器设计[J]. 工矿自动化,2023,49(8):30-36.  doi: 10.13272/j.issn.1671-251x.2023060031
ZHANG Xiaohai, TIAN Muqin, ZHANG Minlong, et al. Design of end controller for the electrohydraulic control system of intelligent working face hydraulic support[J]. Journal of Mine Automation,2023,49(8):30-36.  doi: 10.13272/j.issn.1671-251x.2023060031
Citation: ZHANG Xiaohai, TIAN Muqin, ZHANG Minlong, et al. Design of end controller for the electrohydraulic control system of intelligent working face hydraulic support[J]. Journal of Mine Automation,2023,49(8):30-36.  doi: 10.13272/j.issn.1671-251x.2023060031

智能工作面液压支架电液控制系统端头控制器设计

doi: 10.13272/j.issn.1671-251x.2023060031
基金项目: 山西省1331工程“提质增效建设计划”项目(晋教科〔2021〕4号)。
详细信息
    作者简介:

    张晓海(1997—),男,山西大同人,硕士研究生,研究方向为矿用智能电器,E-mail:3116115716@qq.com

  • 中图分类号: TD355

Design of end controller for the electrohydraulic control system of intelligent working face hydraulic support

  • 摘要: 随着无人值守智能化综采工作面建设的不断推进,对液压支架电液控制系统的自动化控制功能提出了更高的技术要求。基于目前国内开发的电液控制技术在满足智能化生产技术要求方面,存在通信速率低、响应不及时和可靠性差等问题,开发了一种基于32位处理器的液压支架电液控制系统端头控制器,设计了基于工业以太网和CAN总线的端头控制器通信架构。根据无人值守智能化综采工作面具有智能感知、智能决策和自动控制的技术要求,在端头控制器中设计了参数巡检、参数修改、在线升级和跟机自动控制功能。为了应对智能化综采工作面对液压支架电液控制系统数据标准化、规范化的要求,端头控制器可以对液压支架电液控制系统产生的数据按照基于位号的数据编码标准进行编码。通过综采工作面“三机”实验平台进行实验,结果表明:端头控制器从发出巡检指令到接收到实验平台27台支架控制器的数据,整个过程用时1.8 s,比使用RS485通信实现参数巡检快1.5 s;端头控制器发送的升级程序大小为38 KiB,传输时间为1.2 s。经过测试,综采工作面所有支架控制器从接收升级命令到一起升级成功用时为4~6 s,达到了预期目标;端头控制器可以根据采煤机位置控制相应液压支架做出正确动作,且能够满足实时性要求。

     

  • 图  1  电液控制系统总体结构

    Figure  1.  Overall structure of the electrohydraulic control system

    图  2  端头控制器硬件结构

    Figure  2.  End controller hardware structure

    图  3  端头控制器参数巡检方案

    Figure  3.  Parameter inspection scheme of end controller

    图  4  基于位号的数据编码标准

    Figure  4.  Data encoding standard based on tag numbers

    图  5  参数修改流程

    Figure  5.  Parameter modification process

    图  6  在线升级流程

    Figure  6.  Online upgrade process

    图  7  跟机自动控制功能设计方案

    Figure  7.  Design scheme of control function of automatic follow-up

    图  8  采煤机正向正常割煤

    Figure  8.  Normal forward cutting of coal by the shearer

    图  9  采煤机空刀返回

    Figure  9.  Return of empty shearer blade

    图  10  采煤机斜切入刀

    Figure  10.  Shearer oblique cutting feed

    图  11  巡检功能测试

    Figure  11.  Inspection function test

    图  12  修改前的邻架操作参数

    Figure  12.  Adjacent support operation parameters before modification

    图  13  修改后的邻架操作参数

    Figure  13.  Adjacent support operation parameters after modification

    图  14  CAN分析仪接收到的升级内容

    Figure  14.  The upgrade content received by the CAN analyzer

    图  15  跟机自动控制功能测试

    Figure  15.  Control function test for moving automatically with the shearer of hydraulic support

  • [1] 高有进,杨艺,常亚军,等. 综采工作面智能化关键技术现状与展望[J]. 煤炭科学技术,2021,49(8):1-22.

    GAO Youjin,YANG Yi,CHANG Yajun,et al. Status and prospect of key technologies of intelligentization of fully-mechanized coal mining face[J]. Coal Science and Technology,2021,49(8):1-22.
    [2] 王国法,任怀伟,庞义辉,等. 煤矿智能化(初级阶段)技术体系研究与工程进展[J]. 煤炭科学技术,2020,48(7):1-27.

    WANG Guofa,REN Huaiwei,PANG Yihui,et al. Research and engineering progress of intelligent coal mine technical system in early stages[J]. Coal Science and Technology,2020,48(7):1-27.
    [3] 李首滨. 煤炭工业互联网及其关键技术[J]. 煤炭科学技术,2020,48(7):98-108.

    LI Shoubin. Coal industry Internet and its key technologies[J]. Coal Science and Technology,2020,48(7):98-108.
    [4] 王国法,徐亚军,张金虎,等. 煤矿智能化开采新进展[J]. 煤炭科学技术,2021,49(1):1-10.

    WANG Guofa,XU Yajun,ZHANG Jinhu,et al. New development of intelligent mining in coal mines[J]. Coal Science and Technology,2021,49(1):1-10.
    [5] 宋单阳,宋建成,田慕琴,等. 煤矿综采工作面液压支架电液控制技术的发展及应用[J]. 太原理工大学学报,2018,49(2):240-251.

    SONG Danyang,SONG Jiancheng,TIAN Muqin,et al. Development and application of electro-hydraulic control technology for hydraulic support in coal mine[J]. Journal of Taiyuan University of Technology,2018,49(2):240-251.
    [6] 高晋,田慕琴,许春雨,等. 基于双CAN总线的薄煤层液压支架电液控制系统研究[J]. 煤炭工程,2020,52(1):143-147.

    GAO Jin,TIAN Muqin,XU Chunyu,et al. Research on electro-hydraulic control system of thin coal seam hydraulic support based on double CAN bus[J]. Coal Engineering,2020,52(1):143-147.
    [7] 雷照源,姚一龙,李磊,等. 大采高智能化工作面液压支架自动跟机控制技术研究[J]. 煤炭科学技术,2019,47(7):194-199.

    LEI Zhaoyuan,YAO Yilong,LI Lei,et al. Research on automatic follow-up control technology of hydraulic support in intelligent working face with large mining height[J]. Coal Science and Technology,2019,47(7):194-199.
    [8] 张帅,任怀伟,韩安,等. 复杂条件工作面智能化开采关键技术及发展趋势[J]. 工矿自动化,2022,48(3):16-25.

    ZHANG Shuai,REN Huaiwei,HAN An,et al. Key technology and development trend of intelligent mining in complex condition working face[J]. Journal of Mine Automation,2022,48(3):16-25.
    [9] ZHANG Kexue,KANG Lei,CHEN Xuexi,et al. A review of intelligent unmanned mining current situation and development trend[J]. Energies,2022,15(2):513. doi: 10.3390/en15020513
    [10] 兰梦澈. 放顶煤液压支架电液控制系统的开发[D]. 太原: 太原理工大学, 2020.

    LAN Mengche. Development of electro-hydraulic control system for caving coal hydraulic supportwireless remote[D]. Taiyuan: Taiyuan University of Technology, 2020.
    [11] 张文杰,宋建成,田慕琴,等. 液压支架运行状态分级监测系统研制[J]. 工矿自动化,2017,43(7):12-17.

    ZHANG Wenjie,SONG Jiancheng,TIAN Muqin,et al. Development of hierarchical monitoring system of operating state of hydraulic support[J]. Industry and Mine Automation,2017,43(7):12-17.
    [12] 葛世荣,郝尚清,张世洪,等. 我国智能化采煤技术现状及待突破关键技术[J]. 煤炭科学技术,2020,48(7):28-46.

    GE Shirong,HAO Shangqing,ZHANG Shihong,et al. Status of intelligent coal mining technology and potential key technologies in China[J]. Coal Science and Technology,2020,48(7):28-46.
    [13] 丁序海. 三道沟煤矿智能矿山建设实践与探索[J]. 工矿自动化,2022,48(增刊1):6-10.

    DING Xuhai. Practice and exploration of intelligent mine construction in Sandaogou Coal Mine[J]. Journal of Mine Automation,2022,48(S1):6-10.
    [14] 乔振峰,谢进,王占飞,等. 基于“7+1+1”基础架构的智能矿山建设[J]. 工矿自动化,2022,48(增刊1):1-5.

    QIAO Zhenfeng,XIE Jin,WANG Zhanfei,et al. Intelligent mine construction based on "7+1+1" infrastructure[J]. Journal of Mine Automation,2022,48(S1):1-5.
    [15] 罗开成,常亚军,高有进. 综采工作面智能开采关键技术实践[J]. 煤炭科学技术,2020,48(7):73-79.

    LUO Kaicheng,CHANG Yajun,GAO Youjin. Key technology practice of intelligent mining in fully-mechanized coal mining face[J]. Coal Science and Technology,2020,48(7):73-79.
    [16] 杜毅博,赵国瑞,巩师鑫. 智能化煤矿大数据平台架构及数据处理关键技术研究[J]. 煤炭科学技术,2020,48(7):177-185.

    DU Yibo,ZHAO Guorui,GONG Shixin. Study on big data platform architecture of intelligent coal mine and key technologies of data processing[J]. Coal Science and Technology,2020,48(7):177-185.
    [17] 张润冬. 自动化工作面液压支架高端端头控制器的开发[D]. 太原: 太原理工大学, 2018.

    ZHANG Rundong. Development of terminal controller for hydraulic support in automated working face[D]. Taiyuan: Taiyuan University of Technology, 2018.
    [18] 丁远,刘鹏,邹德东,等. 基于ARM的煤矿监控分站IAP远程升级技术[J]. 煤矿安全,2019,50(8):107-110.

    DING Yuan,LIU Peng,ZOU Dedong,et al. Application of IAP remote upgrade technology in coal mine safety monitoring substation based on ARM[J]. Safety in Coal Mines,2019,50(8):107-110.
    [19] 唐志章. 综采工作面集中控制关键技术研究[D]. 徐州: 中国矿业大学, 2021.

    TANG Zhizhang. Research on key technologies of centralized control in fully mechanized mining face[D]. Xuzhou: China University of Mining and Technology, 2021.
    [20] 赵龙,宋建成,田慕琴,等. 综采工作面液压支架集中控制系统设计[J]. 工矿自动化,2015,41(2):9-13.

    ZHAO Long,SONG Jiancheng,TIAN Muqin,et al. Design of centralized control system for hydraulic supports on fully-mechanized coal mining face[J]. Industry and Mine Automation,2015,41(2):9-13.
    [21] 张润冬,许春雨,田慕琴,等. 基于MC9S12XDP512单片机的液压支架集中控制系统研究与设计[J]. 中国煤炭,2017,43(8):89-95.

    ZHANG Rundong,XU Chunyu,TIAN Muqin,et al. Research and design of centralized control system for hydraulic support based on MC9S12XDP512 MCU[J]. China Coal,2017,43(8):89-95.
  • 加载中
图(15)
计量
  • 文章访问数:  278
  • HTML全文浏览量:  60
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-09
  • 修回日期:  2023-07-25
  • 网络出版日期:  2023-09-04

目录

    /

    返回文章
    返回