留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于煤矿井下不安全行为知识图谱构建方法

付燕 刘致豪 叶鸥

付燕,刘致豪,叶鸥. 基于煤矿井下不安全行为知识图谱构建方法[J]. 工矿自动化,2024,50(1):88-95.  doi: 10.13272/j.issn.1671-251x.2023060014
引用本文: 付燕,刘致豪,叶鸥. 基于煤矿井下不安全行为知识图谱构建方法[J]. 工矿自动化,2024,50(1):88-95.  doi: 10.13272/j.issn.1671-251x.2023060014
FU Yan, LIU Zhihao, YE Ou. A method for constructing a knowledge graph of unsafe behaviors in coal mines[J]. Journal of Mine Automation,2024,50(1):88-95.  doi: 10.13272/j.issn.1671-251x.2023060014
Citation: FU Yan, LIU Zhihao, YE Ou. A method for constructing a knowledge graph of unsafe behaviors in coal mines[J]. Journal of Mine Automation,2024,50(1):88-95.  doi: 10.13272/j.issn.1671-251x.2023060014

基于煤矿井下不安全行为知识图谱构建方法

doi: 10.13272/j.issn.1671-251x.2023060014
基金项目: 中国博士后科学基金项目(2020M673446)。
详细信息
    作者简介:

    付燕(1972—) ,女,河南鹤壁人,教授,博士,主要研究方向为计算机图形图像处理技术、科学计算及其可视化技术等,E-mail:942542352@qq.com

    通讯作者:

    刘致豪(1997—),男,河南商丘人,硕士研究生,主要研究方向为知识图谱,E-mail:2267318289@qq.com

  • 中图分类号: TD79

A method for constructing a knowledge graph of unsafe behaviors in coal mines

  • 摘要: 虽然知识图谱已广泛应用于各个领域,但在煤矿安全方面,尤其在煤矿井下不安全行为方面的研究较少。构建了一种自底向上的煤矿井下不安全行为知识图谱。首先,采用传统机器学习和深度学习算法相结合的方法进行命名实体识别,采用RoBERTa进行词语向量化,采用双向长短时记忆网络(BiLSTM)对向量进行标注,提高网络模型对上下文特征的捕捉能力,通过多层感知机(MLP)解决煤矿井下不安全行为数据集数据量不足的问题,采用条件随机场(CRF)模型解决前面存在的单词关系不识别问题,并捕获全文信息和预测结果。其次,根据语句的结构特点,设计了基于知识“实体−关系−实体”三元组的依存句法树结构,对井下不安全行为领域的知识资源进行知识抽取与表示。最后,构建面向井下不安全行为的知识图谱。实验结果表明:① RoBERTa−BiLSTM−MLP−CRF模型对于导致结果、违反性行为、错误性行为及粗心性行为4类实体类别具有较好的识别效果,其准确率分别为86.7%,80.3%,80.7%,77.4%。② 在相同的数据集下,RoBERTa−BiLSTM−MLP−CRF模型训练的准确率、召回率、F1值较RoBERTa−BiLSTM−CRF模型分别提高了1.6%,1.5%,1.6%。

     

  • 图  1  基于RoBERTa−BiLSTM−MLP−CRF实体识别过程

    Figure  1.  RoBERTa-BiLSTM-MLP-CRF based entity recognition

    图  2  RoBERTa模型

    Figure  2.  RoBERTa model

    图  3  BiLSTM模型

    Figure  3.  BiLSTM model

    图  4  MLP模型

    Figure  4.  MLP model

    图  5  线性链CRF模型

    Figure  5.  Linear chain CRF model

    图  6  RoBERTa−BiLSTM−MLP−CRF模型

    Figure  6.  RoBERTa-BiLSTM-MLP-CRF model

    图  7  部分煤矿井下不安全行为知识图谱

    Figure  7.  Knowledge graph of underground unsafe behavior in some underground coal mines

    表  1  实体待预测标签

    Table  1.   Entity to be predicted labels

    实体类型 开始标签 中间或结尾标签
    遗忘性行为 B−forget I−forget
    粗心性行为 B−careless I−careless
    错误性行为 B−error I−error
    违反性行为 B−violate I−violate
    关联因素影响性行为 B−factor I− factor
    导致后果 B−cause I−cause
    下载: 导出CSV

    表  2  实体相似度计算实例

    Table  2.   Example of entity similarity calculation

    实体1实体2SconsineSJarccard
    粉尘瓦斯爆炸粉尘瓦斯事故0.670.50
    违章指挥违章命令0.670.60
    不安全动作不安全行为0.600.43
    安全培训安全训练0.670.60
    下载: 导出CSV

    表  3  基于Neo4j的知识存储方案

    Table  3.   Neo4j-based knowledge storage solutions

    类型作用对象范围
    节点描述知识实体井下扒车、穿化纤衣入井等
    标签描述知识概念类违章指挥、违规操作等
    描述实体关系包含关系、关联关系等
    下载: 导出CSV

    表  4  实体类型识别效果

    Table  4.   Entity type identification effect %

    实体类别 P R F1
    遗忘性行为 63.5 67.4 65.4
    粗心性行为 77.4 84.1 80.6
    错误性行为 80.7 83.1 81.9
    违反性行为 80.3 83.7 82.0
    关联因素影响性行为 73.0 76.0 74.5
    导致后果 86.7 90.0 88.3
    下载: 导出CSV

    表  5  模型对比结果

    Table  5.   Model contrast results %

    模型 P R F1
    BiLSTM−CRF 71.2 74.8 73.0
    BERT−BiLSTM−CRF 74.9 79.1 77.0
    RoBERTa−BiLSTM−CRF 75.6 79.1 77.3
    RoBERTa−BiLSTM−MLP−CRF 77.2 80.6 78.9
    下载: 导出CSV
  • [1] 黄辉,张雪. 煤矿员工不安全行为研究综述[J]. 煤炭工程,2018,50(6):123-127.

    HUANG Hui,ZHANG Xue. Review of research on unsafe behavior of miners[J]. Coal Engineering,2018,50(6):123-127.
    [2] GUARINO N,WELTY C. Evaluating ontological decisions with OntoClean[J]. Communications of the ACM,2002,45(2):61-65. doi: 10.1145/503124.503150
    [3] HORROCKS,IAN,PATEL-SCHNEIDER,et al. SWRL:a semantic web rule language combining OWL and RuleML[J]. W3C Member Submission,2004,21(79):1-31.
    [4] BORDES A,USUNIER N,GARCIA-DURAN A,et al. Translating embeddings for modeling multi-relational data[C]. Neural Information Processing Systems,South Lake Tahoe,2013:1-9.
    [5] WANG Zhen,ZHANG Jianwen,FENG Jianlin,et al. Knowledge graph embedding by translating on hyperplanes[C]. The 28th AAAI Conference on Artificial Intelligence,2014.
    [6] 刘文聪,张春菊,汪陈,等. 基于BiLSTM−CRF的中文地质时间信息抽取[J]. 地球科学进展,2021,36(2):211-220.

    LIU Wencong,ZHANG Chunju,WANG Chen,et al. Geological time information extraction from Chinese text based on BiLSTM-CRF[J]. Advances in Earth Science,2021,36(2):211-220.
    [7] 吴闯,张亮,唐希浪,等. 航空发动机润滑系统故障知识图谱构建及应用[J/OL]. 北京航空航天大学学报:1-14[2023-05-22].https://doi.org/10.13700/j.bh.1001-5965.2022.0434.

    WU Chuang,ZHANG Liang,TANG Xilang,et al. Construction and application of fault knowledge graph for aero-engine lubrication system[J/OL]. Journal of Beijing University of Aeronautics and Astronautics:1-14[2023-05-22]. https://doi.org/10.13700/j.bh.1001-5965.2022.0434.
    [8] SHAO Zhou,YUAN Sha,WANG Yongli,et al. ELAD:an entity linking based affiliation disambiguation framework[J]. IEEE Access,2020,8:70519-70526. doi: 10.1109/ACCESS.2020.2986826
    [9] FANG Yuan,CHANG Mingwei. Entity linking on microblogs with spatial and temporal signals[J]. Transactions of the Association for Computational Linguistics,2014,2:259-272. doi: 10.1162/tacl_a_00181
    [10] SIMONE F,ANSALDI S,AAGNELLO P,et al. Industrial safety management in the digital era:constructing a knowledge graph from near misses[J]. Computers in Industry,2023,146. DOI: 10.1016/j.compind.2022.103849.
    [11] 尉桢楷,程梦,周夏冰,等. 基于类卷积交互式注意力机制的属性抽取研究[J]. 计算机研究与发展,2020,57(11):2456-2466.

    WEI Zhenkai,CHENG Meng,ZHOU Xiabing,et al. Convolutional interactive attention mechanism for aspect extraction[J]. Journal of Computer Research and Development,2020,57(11):2456-2466.
    [12] 刘峤,李杨,段宏,等. 知识图谱构建技术综述[J]. 计算机研究与发展,2016,53(3):582-600.

    LIU Qiao,LI Yang,DUAN Hong,et al. Knowledge graph construction techniques[J]. Journal of Computer Research and Development,2016,53(3):582-600.
    [13] HOCHREITER S,SCHMIDHUBER J. Long short-term memory[J]. Neural Computation,1997,9(8):1735-1780. doi: 10.1162/neco.1997.9.8.1735
    [14] SEKI K. On cross-lingual text similarity using neural translation models[J]. Journal of Information Science,2020,27:315-321.
    [15] 李红霞,樊欣怡. 人因视角下国内煤矿安全领域研究现状与发展趋势[J]. 煤炭工程,2022,54(1):181-186.

    LI Hongxia,FAN Xinyi. Status and development trend of coal mine safety research from the perspective of human factors[J]. Coal Engineering,2022,54(1):181-186.
    [16] BENGIO Y,DUCHARME RVINCENT P. A neural probabilistic language model[J]. Journal of Machine Learning Research,2003,3:1137-1155.
    [17] PENNINGTON J,SOCHER R,MANNING C. Glove:global vectors for word representation[C]. Conference on Empirical Methods in Natural Language Processing,Doha,2014:1532-1543.
    [18] PETERS M E,NEUMANN M,LYYER M,et al. Deep contextualized word representations[C]. Conference of the North American Chapter of the Association for Computational Linguistics,New Orleans,2018:2227-2237.
    [19] DEVLIN J,CHANG Mingwei,LEE K,et al. BERT:pre-training of deep bidirectional transformers for language understanding[C]. Conference of the North American Chapter of the Association for Computational Lingristics,Jill Burstein,2019:4171-4186.
    [20] XU Wencong,HU Yue,LI Jianxun. A data-driven Dir-MUSIC method based on the MLP model[J]. IET Science,Measurement & Technology,2022(6):367-376.
    [21] 王智广,文红英,鲁强,等. 地质领域开放式实体关系联合抽取[J]. 计算机工程与设计,2021,42(4):996-1005.

    WANG Zhiguang,WEN Hongying,LU Qiang,et al. Joint extraction of open entity relation in geological field[J]. Computer Engineering and Design,2021,42(4):996-1005.
    [22] 赵晓娟,贾焰,李爱平,等. 多源知识融合技术研究综述[J]. 云南大学学报(自然科学版),2020,42(3):459-473.

    ZHAO Xiaojuan,JIA Yan,LI Aiping,et al. A survey of the research on multi-source knowledge fusion technology[J]. Journal of Yunnan University(Natural Sciences Edition),2020,42(3):459-473.
    [23] 乔骥,王新迎,闵睿,等. 面向电网调度故障处理的知识图谱框架与关键技术初探[J]. 中国电机工程学报,2020,40(18):5837-5849.

    QIAO Ji,WANG Xinying,MIN Rui,et al. Framework and key technologies of knowledge-graph-based fault handling system in power grid[J]. Proceedings of the CSEE,2020,40(18):5837-5849.
    [24] 曹现刚,张梦园,雷卓,等. 煤矿装备维护知识图谱构建及应用[J]. 工矿自动化,2021,47(3):41-45.

    CAO Xiangang,ZHANG Mengyuan,LEI Zhuo,et al. Construction and application of knowledge graph for coal mine equipment maintenance[J]. Industry and Mine Automation,2021,47(3):41-45.
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  787
  • HTML全文浏览量:  102
  • PDF下载量:  102
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-06
  • 修回日期:  2024-01-08
  • 网络出版日期:  2024-01-31

目录

    /

    返回文章
    返回