留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

矿井直流电法技术应用现状与展望

杨少文 张平松 许时昂 吴海波 邱实 焦文杰

杨少文,张平松,许时昂,等. 矿井直流电法技术应用现状与展望[J]. 工矿自动化,2023,49(8):20-29.  doi: 10.13272/j.issn.1671-251x.2023050099
引用本文: 杨少文,张平松,许时昂,等. 矿井直流电法技术应用现状与展望[J]. 工矿自动化,2023,49(8):20-29.  doi: 10.13272/j.issn.1671-251x.2023050099
YANG Shaowen, ZHANG Pingsong, XU Shi'ang, et al. Status and prospect of the application of mine DC electrical method technology[J]. Journal of Mine Automation,2023,49(8):20-29.  doi: 10.13272/j.issn.1671-251x.2023050099
Citation: YANG Shaowen, ZHANG Pingsong, XU Shi'ang, et al. Status and prospect of the application of mine DC electrical method technology[J]. Journal of Mine Automation,2023,49(8):20-29.  doi: 10.13272/j.issn.1671-251x.2023050099

矿井直流电法技术应用现状与展望

doi: 10.13272/j.issn.1671-251x.2023050099
基金项目: 安徽省高校协同创新项目(GXXT-2021-016)。
详细信息
    作者简介:

    杨少文(1995—),男,安徽阜阳人,硕士研究生,主要研究方向为矿山工程勘探,E-mail: swyang2023@163.com

    通讯作者:

    张平松(1971—),男,安徽六安人,教授,博士研究生导师,从事综合地球物理勘探、矿山及工程多灾害源探测与防治等方向的教学与研究工作,E-mail: pszhang1971@163.com

  • 中图分类号: TD745

Status and prospect of the application of mine DC electrical method technology

  • 摘要: 矿井直流电法作为一种高效的地球物理勘探手段,在精准圈定各类异常区方面发挥了重要作用。井下探测空间小、干扰多、技术要求高,其发展受到诸多因素限制,因此,建立快速采掘模式下与智能化矿井生产相匹配的矿井直流电法技术体系意义重大。从基本原理、技术发展及分类3个方面对矿井直流电法进行了概述,总结了矿井直流电法用于顶底板探查、巷道超前探测、工作面内异常区探查等方面的最新进展;对矿井直流电法仪器与设备研发进展进行了分析,列举了常见的几类矿井直流电法仪器;分析了矿井直流电法在解决工程问题中存在的关键问题:① 目前矿井直流电法超前探测技术在含/导水异常体圈定空间的定位精度低,同时存在有效探测距离不足的问题。② 矿井直流电法施工空间狭小,在有限的测试空间内,多方位地质异常体电性响应叠加,增加了数据处理和解释难度。③ 矿井直流电法在井下应用时易受场地金属源干扰,特别是受掘进机、液压支架、锚锁(网)支护、轨道、输送管道等大型金属件影响。对矿井直流电法未来发展方向进行了展望:① 构建多源地电场数据响应特征库。② 多源数据融合解释。③ 建立矿井直流电法智能化监测体系。

     

  • 图  1  矿井直流电法探测原理

    Figure  1.  Detection principle of mine DC electrical method

    图  2  矿井直流电法简要发展历程

    Figure  2.  Brief development history of mine DC electrical method

    图  3  底板相对低阻区分布[32]

    Figure  3.  Distribution of relatively low resistance zone on the floor[32]

    图  4  超前探测电阻率反演断面[44]

    Figure  4.  Resistivity inversion section of advance detection[44]

    图  5  工作面音频电透视三维反演成像结果[48]

    Figure  5.  Imaging result of 3D inversion of audio-frequency electric perspective for working face[48]

    图  6  矿井直流电法智能化监测体系

    Figure  6.  Intelligent monitoring system for mine DC electrical method

    表  1  常见的矿井直流电法分类[19-20]

    Table  1.   Common classification of mine DC electrical methods [19-20]

    场源性质测试方法技术原理技术特点应用领域
    天然场源 自然电位法 通过研究自然电场分布规律达到找矿或解决其他地质问题的目的 测试方式简单,无需向被测体供电 矿井采掘围岩破坏规律研究、地下水渗流探查等
    人工场源 充电法 对被测地质体充电,并观测充电电场的分布,从而推断地质体赋存情况 测试方式较简单,工作量小,但应用条件受限制,即被测体为良导体,且其围岩的电阻率稳定 早期多用于找煤工作
    时域激电法 以岩矿石极化率为基础的人工源勘探方法 仪器设备较笨重,采集信号受井下环境干扰 早期找水方面应用较多
    直流电透视法 与矿井无线电透视原理类似,采用直流供电,研究巷道及工作面电场变化规律 现场测试需两巷道配合采集工作,对现场测试环境要求较高,工作量较大 探测工作面内部及其顶底板围岩体的含水构造等
    电测深/电剖面 通过布设4道电极并改变电极间距离,获得电测深或电剖面数据 工作量大,测试效率低,数据量少 最初电法勘探中该方法使用较多,目前该方法难以满足实际测试需求
    高密度电法 集电测深法和电剖面法于一体的阵列式智能勘探方法 现场施工方便,测试速度快,精度高,对富水区等异常响应灵敏 可探测工作面内部及其顶底板围岩体的含水构造,进行巷道超前探测,可通过孔−孔、孔−巷等布置方式对工作面顶底板破坏范围进行监测
    网络并行电法 采用拟地震式的数据采集方式,解决常规直流电法仪器存在的无法串行采集等问题
    超高密度电法 采用一次布极,采集所有可能组合电极间的电位信息,并且避开视电阻率概念,利用处理软件直接反演获取断面真电阻率 主要以地面应用为主
    下载: 导出CSV

    表  2  常见矿井直流电法仪器功能及特点

    Table  2.   Functions and characteristics of common DC electrical instruments in mines

    仪器名称功能仪器特点
    YD32(A)矿用高分辨率电法仪 具有电测深、电剖面和超前探测等功能 大功率输出增加了探测距离,实现了超前探测的电极全自动切换
    YDZ(A)直流电法仪 体积小、施工方便、性能稳定可靠,YDZ(B)型抗干扰能力较强
    YDZ(B)直流电法仪
    YDZ24矿用本安型直流电法仪 具有电阻率法、自然电位法探测等功能 主从机设计,配备高清触摸屏,可以根据需求增加仪器道数
    YDE24矿用本安型地震电法仪从机 具有电阻率法、自然电位法和地震单分量或多分量地震数据采集
    YDZ32矿用直流电法仪 具有电测深、电剖面和超前探测法功能 测量精度高、抗干扰能力强,探测结果为2D图,成果解释直观
    YDG64矿用高密度电法仪 具有高密度电法采集功能
    YDZ16(B)矿用多道并行直流电法仪器 具有自然电位法、电测深、电剖面法、超前探测等功能 多通道设计且在采集过程中电极可以自动切换
    YBT96矿用交直流并行电法透视仪 可实现双巷高密度电透、多频电透、三维全透视 除发射电极外,其他的电极参与同步接收,实现同源、同场观测
    YDZ75(A)矿用本安型并行直流电法仪器 具有自然电位法、电测深、电剖面法、超前探测等功能 接收、发射、电源系统一体化设计,采集速度快,抗工频干扰、随机干扰能力强
    YDJ256−03矿用浇筑兼本安型高密度电法仪 具有高密度电法采集功能 集电源、数据采集和成图于一体,且可一键完成测量
    YBD12矿用本安型网络电法仪 具有电阻率法、自然电位法、充电法、激电法(时间域和频率域)等探测功能,YSD11增加了多分量地震勘探功能,YZD11增加了多波多分量地震探测功能 具有一键成图模式,配备高清触摸屏,可以实时显示视电阻率剖面图、视极化率剖面图等
    YSD11矿用本安型微震电法仪 具有一键成图模式,配备高清触摸屏更加智能,但主机和基站独立增大了工作强度
    YZD11矿用本安型槽波地震电法仪
    YDZ24矿用本安型直流电法仪 具有电阻率法、自然电位法探测等功能 主从机设计,配备高清触摸屏,可以根据需求增加仪器道数
    YDE24矿用本安型地震电法仪从机 具有电阻率法、自然电位法和地震单分量或多分量地震数据采集
    下载: 导出CSV
  • [1] 王双明,申艳军,宋世杰,等. “双碳”目标下煤炭能源地位变化与绿色低碳开发[J]. 煤炭学报,2023,48(7):2599-2612.

    WANG Shuangming,SHEN Yanjun,SONG Shijie,et al. Change of coal energy status and green and low-carbon development under the "dual carbon" goal[J]. Journal of China Coal Society,2023,48(7):2599-2612.
    [2] 国家统计局. 中华人民共和国2022年国民经济和社会发展统计公报[EB/OL]. [2023-06-29]. https://www.gov.cn/xinwen/2023-02/28/content_5743623.htm?eqid=cb48c394000725f6000000026458a34d.

    National Bureau of Statistics. Statistical communique of the People's Republic of China on the 2022 national economic and social development [EB/OL]. [2023-06-29]. https://www.gov.cn/xinwen/2023-02/28/content_5743623.htm?eqid=cb48c394000725f6000000026458a34d.
    [3] 国家能源局. 关于加快推进能源数字化智能化发展的若干意见[EB/OL]. [2023-06-29]. https://www.gov.cn/zhengce/zhengceku/2023-04/02/content_5749758.htm.

    National Energy Administration. Some views on accelerating the development of digital intelligence in energy[EB/OL]. [2023-06-29]. https://www.gov.cn/zhengce/zhengceku/2023-04/02/content_5749758.htm.
    [4] 袁亮,张平松. 煤矿透明地质模型动态重构的关键技术与路径思考[J]. 煤炭学报,2023,48(1):1-14.

    YUAN Liang,ZHANG Pingsong. Key technology and path thinking of dynamic reconstruction of mine transparent geological model[J]. Journal of China Coal Society,2023,48(1):1-14.
    [5] 董书宁. 煤矿安全高效生产地质保障的新技术新装备[J]. 中国煤炭,2020,46(9):15-23.

    DONG Shuning. New technology and equipment of geological guarantee for safe and efficient production in coal mine[J]. China Coal,2020,46(9):15-23.
    [6] 程建远,石显新. 中国煤炭物探技术的现状与发展[J]. 地球物理学进展,2013,28(4):2024-2032.

    CHENG Jianyuan,SHI Xianxin. Current status and development of coal geophysical technology in China[J]. Progress in Geophysics,2013,28(4):2024-2032.
    [7] 严加永,孟贵祥,吕庆田,等. 高密度电法的进展与展望[J]. 物探与化探,2012,36(4):576-584.

    YAN Jiayong,MENG Guixiang,LYU Qingtian,et al. The progress and prospect of the electrical resistivity imaging survey[J]. Geophysical and Geochemical Exploration,2012,36(4):576-584.
    [8] 程久龙,李飞,彭苏萍,等. 矿井巷道地球物理方法超前探测研究进展与展望[J]. 煤炭学报,2014,39(8):1742-1750.

    CHENG Jiulong,LI Fei,PENG Suping,et al. Research progress and development direction on advanced detection in mine roadway working face using geophysical methods[J]. Journal of China Coal Society,2014,39(8):1742-1750.
    [9] 刘国兴. 电法勘探原理与方法[M]. 北京: 地质出版社, 2005.

    LIU Guoxing. Principles and methods of electrical prospecting[M]. Beijing: Geology Press, Beijing, 2005.
    [10] 中国煤田地质总局. 中国煤田地质勘探史[M]. 北京: 煤炭工业出版社, 1993.

    China National Administration of Coal Geology.A history of China coal geological exploration[M]. Beijing: China Coal Industry Publishing House, 1993.
    [11] 岳建华,李志聃. 矿井直流电法及在煤层底板突水探测中的应用[J]. 中国矿业大学学报,1997,26(1):96-100.

    YUE Jianhua,LI Zhidan. Mine DC electrical methods and application to coal floor water invasion detecting[J]. Journal of China University of Mining & Technology,1997,26(1):96-100.
    [12] 李学军. 煤矿井下定点源梯度法超前探测试验研究[J]. 煤田地质与勘探,1992,20(4):59-63.

    LI Xuejun. Study and experiment on heading detecting by fixedelectric source gradient method in underground[J]. Coal Geology & Exploration,1992,20(4):59-63.
    [13] 岳建华, 刘树才. 矿井直流电法勘探[M]. 徐州: 中国矿业大学出版社, 2000.

    YUE Jianhua, LIU Shucai. DC electrical exploration in mines[M]. Xuzhou: China University of Mining and Technology Press, 2000.
    [14] 刘盛东, 张平松. 分布式并行智能电极电位差信号采集方法和系统: CN1616987[P]. 2005-05-18.

    LIU Shengdong, ZHANG Pingsong. Collecting method and system for distributive parallel intelligent electrode potential difference signals: CN1616987[P]. 2005-05-18.
    [15] 王冰纯,鲁晶津,房哲. 基于伪随机序列的矿井电法监测系统[J]. 煤矿安全,2018,49(12):118-121.

    WANG Bingchun,LU Jingjin,FANG Zhe. Research on mine electrical monitoring system based on pseudo-random sequence[J]. Safety in Coal Mines,2018,49(12):118-121.
    [16] 刘盛东,刘静,戚俊,等. 矿井并行电法技术体系与新进展[J]. 煤炭学报,2019,44(8):2336-2345.

    LIU Shengdong,LIU Jing,QI Jun,et al. Applied technologies and new advances of parallel electrical method in mining geophysics[J]. Journal of China Coal Society,2019,44(8):2336-2345.
    [17] 程建远,王保利,范涛,等. 煤矿地质透明化典型应用场景及关键技术[J]. 煤炭科学技术,2022,50(7):1-12.

    CHENG Jianyuan,WANG Baoli,FAN Tao,et al. Typical application scenes and key technologies of coal mine geological transparency[J]. Coal Science and Technology,2022,50(7):1-12.
    [18] ZHAO Shuanfeng,WEI Mingle,ZHANG Chuanwei,et al. Coal mine inclined shaft advanced detection method and physical model test based on shield cutterhead moving array electrodes[J]. Energies,2019,12(9):1-15.
    [19] 张平松,欧元超,李圣林. 我国矿井物探技术及装备的发展现状与思考[J]. 煤炭科学技术,2021,49(7):1-15.

    ZHANG Pingsong,OU Yuanchao,LI Shenglin. Development quo-status and thinking of mine geophysical prospecting technology and equipment in China[J]. Coal Science and Technology,2021,49(7):1-15.
    [20] 曹煜. 并行直流电法成像技术研究[D]. 淮南: 安徽理工大学, 2008.

    CAO Yu. The imager technology of concurrent electrical meter[D]. Huainan: Anhui University of Science and Technology, 2008.
    [21] 张平松,许时昂,郭立全,等. 采场围岩变形与破坏监测技术研究进展及展望[J]. 煤炭科学技术,2020,48(3):14-48.

    ZHANG Pingsong,XU shi'ang,GUO Liquan,et al. Prospect and progress of deformation and failure monitoring technology of surrounding rock in stope[J]. Coal Science and Technology,2020,48(3):14-48.
    [22] 程久龙,于师建. 覆岩变形破坏电阻率响应特征的模拟实验研究[J]. 地球物理学报,2000,43(5):699-706.

    CHENG Jiulong,YU Shijian. Simulation experiment on the response of resistivity to deformation and failure of overburden[J]. Chinese Journal of Geophysics,2000,43(5):699-706.
    [23] 李建楼,刘盛东,张平松,等. 并行网络电法在煤层覆岩破坏监测中的应用[J]. 煤田地质与勘探,2008,36(2):61-64.

    LI Jianlou,LIU Shengdong,ZHANG Pingsong,et al. Failure dynamic observation of upper covered stratum under mine using parallel network electricity method[J]. Coal Geology & Exploration,2008,36(2):61-64.
    [24] 刘树才,刘鑫明,姜志海,等. 煤层底板导水裂隙演化规律的电法探测研究[J]. 岩石力学与工程学报,2009,28(2):348-356.

    LIU Shucai,LIU Xinming,JIANG Zhihai,et al. Research on electrical prediction for evaluating water conducting fracture zones in coal seam floor[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(2):348-356.
    [25] 张平松,胡雄武,刘盛东. 采煤面覆岩破坏动态测试模拟研究[J]. 岩石力学与工程学报,2011,30(1):78-83.

    ZHANG Pingsong,HU Xiongwu,LIU Shengdong. Study of dynamic detection simulation of overburden failure in model workface[J]. Chinese Journal of Rock Mechanics and Engineering,2011,30(1):78-83.
    [26] 张平松,胡雄武,吴荣新. 岩层变形与破坏电法测试系统研究[J]. 岩土力学,2012,33(3):952-956.

    ZHANG Pingsong,HU Xiongwu,WU Rongxin. Study of detection system of distortion and collapsing of top rock by resistivity method in working face[J]. Rock and Soil Mechanics,2012,33(3):952-956.
    [27] 施龙青,牛超,翟培合,等. 三维高密度电法在顶板水探测中应用[J]. 地球物理学进展,2013,28(6):3276-3279.

    SHI Longqing,NIU Chao,ZHAI Peihe,et al. Application of three-dimensional high density resistivity technique in detecting roof water[J]. Progress in Geophysics,2013,28(6):3276-3279.
    [28] SHI Longqing,WANG Ying,QIU Mei,et al. Application of three-dimensional high-density resistivity method in roof water advanced detection during working stope mining[J]. Arabian Journal of Geosciences,2019,12(15):464-471. doi: 10.1007/s12517-019-4586-7
    [29] 杨海平,刘盛东,杨彩,等. 煤层顶底板采动破坏同步动态监测电性特征分析[J]. 工程地质学报,2021,29(4):1002-1009.

    YANG Haiping,LIU Shengdong,YANG Cai,et al. Analysis of electrical characteristics of mining destruction on coal seam roof and floor with simultaneous dynamic monitoring method[J]. Journal of Engineering Geology,2021,29(4):1002-1009.
    [30] 鲁晶津. 工作面采动破坏过程电阻率动态响应特征研究[J]. 工矿自动化,2023,49(1):36-45,108.

    LU Jingjin. Study on dynamic response characteristics of resistivity in mining failure process of working face[J]. Journal of Mine Automation,2023,49(1):36-45,108.
    [31] 翟培合,张同德,任科科,等. 基于最小二乘正则化的高密度电法在小港煤矿71502工作面底板中的应用[J]. 中国科技论文,2022,17(1):15-20.

    ZHAI Peihe,ZHANG Tongde,REN Keke,et al. Application of high density electrical method based on least square regularization in floor of working face 71502 of Xiaogang Coal Mine[J]. China Sciencepaper,2022,17(1):15-20.
    [32] 胡雄武,孟当当,张平松,等. 采煤工作面底板水视电阻率全方位探测方法[J]. 煤炭学报,2019,44(8):2369-2376.

    HU Xiongwu,MENG Dangdang,ZHANG Pingsong,et al. An all-directional detection method of apparent resistivity for water from the floor strata of coal-mining face[J]. Journal of China Coal Society,2019,44(8):2369-2376.
    [33] 鲁晶津,李德山,王冰纯. 超大采高工作面顶板电阻率监测可行性试验[J]. 煤田地质与勘探,2019,47(3):186-194.

    LU Jingjin,LI Deshan,WANG Bingchun. Feasibility test of roof resistivity monitoring for super-high mining face[J]. Coal Geology & Exploration,2019,47(3):186-194.
    [34] 温亨聪,刘宝宝,杨海涛. 矿井电法高效顶板探测系统研究与应用[J]. 煤矿安全,2022,53(1):151-155.

    WEN Hengcong,LIU Baobao,YANG Haitao. Research and application of mine electric method in high efficiency roof detection system[J]. Safety in Coal Mines,2022,53(1):151-155.
    [35] 康红普. 我国煤矿巷道围岩控制技术发展70年及展望[J]. 岩石力学与工程学报,2021,40(1):1-30.

    KANG Hongpu. Seventy years development and prospects of strata control technologies for coal mine roadways in China[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(1):1-30.
    [36] 程久龙,王玉和,于师建,等. 巷道掘进中电阻率法超前探测原理与应用[J]. 煤田地质与勘探,2000,28(4):60-62.

    CHENG Jiulong,WANG Yuhe,YU Shijian,et al. The principle and application of advance surveying in roadway excavation by resistivity method[J]. Coal Geology & Exploration,2000,28(4):60-62.
    [37] 刘青雯. 井下电法超前探测方法及其应用[J]. 煤田地质与勘探,2001,29(5):60-62.

    LIU Qingwen. Underground electrical lead survey method and its application[J]. Coal Geology & Exploration,2001,29(5):60-62.
    [38] 黄俊革,王家林,阮百尧. 坑道直流电阻率法超前探测研究[J]. 地球物理学报,2006,49(5):1529-1538.

    HUANG Junge,WANG Jialin,RUAN Baiyao. A study on advanced detection using DC resistivity method in tunnel[J]. Chinese Journal of Geophysics,2006,49(5):1529-1538.
    [39] 胡雄武,张平松,吴荣新,等. 矿井多极供电电阻率法超前探测技术研究[J]. 地球物理学进展,2010,25(5):1709-1715.

    HU Xiongwu,ZHANG Pingsong,WU Rongxing,et al. Study on the advanced detection technique by multi-electrode direct current resistivity in mines[J]. Progress in Geophysics,2010,25(5):1709-1715.
    [40] 阮百尧,邓小康,刘海飞,等. 坑道直流电阻率超前聚焦探测新方法研究[J]. 地球物理学报,2009,52(1):289-296.

    RUAN Baiyao,DENG Xiaokang,LIU Haifei,et al. Research on a new method of advanced focus detection with DC resistivity in tunnel[J]. Chinese Journal of Geophysics,2009,52(1):289-296.
    [41] 韩德品,李丹,程久龙,等. 超前探测灾害性含导水地质构造的直流电法[J]. 煤炭学报,2010,35(4):635-639.

    HAN Depin,LI Dan,CHENG Jiulong,et al. DC method of advanced detecting disastrous water-conducting or water-bearing geological structures along same layer[J]. Journal of China Coal Society,2010,35(4):635-639.
    [42] 周官群,王亚飞,陈兴海,等. 掘进工作面“三角锥”型直流电法超前探测正演研究[J]. 煤炭学报,2022,47(8):3015-3023.

    ZHOU Guanqun,WANG Yafei,CHEN Xinghai,et al. Research on forward modeling of "triangular cone" type direct current method for heading detection[J]. Journal of China Coal Society,2022,47(8):3015-3023.
    [43] 张平松,李永盛,胡雄武. 巷道掘进直流电阻率法超前探测技术应用探讨[J]. 地下空间与工程学报,2013,9(1):135-140.

    ZHANG Pingsong,LI Yongsheng,HU Xiongwu. Application and discussion of the advanced detection technology with DC resistivity method in tunnel[J]. Chinese Journal of Underground Space and Engineering,2013,9(1):135-140.
    [44] 王敏,刘玉,牟义,等. 多装置矿井直流电法巷道超前探测研究及应用[J]. 煤炭学报,2021,46(增刊1):396-405.

    WANG Min,LIU Yu,MU Yi,et al. Research and application of multi-array mine DC electrical method for road-way advanced detection[J]. Journal of China Coal Society,2021,46(S1):396-405.
    [45] 刘洋,吴小平. 巷道超前探测的并行Monte Carlo方法及电阻率各向异性影响[J]. 地球物理学报,2016,59(11):4297-4309.

    LIU Yang,WU Xiaoping. Parallel Monte Carlo method for advanced detection in tunnel incorporating anisotropic resistivity effect[J]. Chinese Journal of Geophysics,2016,59(11):4297-4309.
    [46] 赵栓峰,丁志兵,李凯凯,等. 盾构机掘进煤矿巷道超前探测系统[J]. 煤矿安全,2019,50(2):117-120.

    ZHAO Shuanfeng,DING Zhibing,LI Kaikai,et al. Advanced detection system for shield tunneling coal roadway[J]. Safety in Coal Mines,2019,50(2):117-120.
    [47] 赵栓峰,拜云瑞,黄涛,等. 基于移动阵列电极的盾构超前探测正演响应分析[J]. 煤田地质与勘探,2020,48(1):214-220.

    ZHAO Shuanfeng,BAI Yunrui,HUANG Tao,et al. Forward response analysis of shield advanced detection with moving array electrode[J]. Coal Geology & Exploration,2020,48(1):214-220.
    [48] 王程,鲁晶津. 音频电穿透三维反演在含/导水陷落柱探查中的应用[J]. 工矿自动化,2019,45(8):105-108.

    WANG Cheng,LU Jingjin. Application of 3D inversion of audio-frequency electric perspective in detection of water-containing/water-conductive collapse column[J]. Industry and Mine Automation,2019,45(8):105-108.
    [49] 牟义,杨新亮,李宏杰,等. 采煤工作面水害电法精细探测技术[J]. 中国矿业,2014,23(3):88-92.

    MU Yi,YANG Xinliang,LI Hongjie,et al. Water disaster fine electrical method detection technology in coal mining working face[J]. China Mining Magazine,2014,23(3):88-92.
    [50] 陈继福,赵庆珍. 音频电法透视技术在界沟矿井水害防治工作中的应用[J]. 山西大同大学学报(自然科学版),2020,36(1):56-60.

    CHEN Jifu,ZHAO Qingzhen. Application of audio electric perspective technology in mine water disaster prevention and cure in Jiegou[J]. Journal of Shanxi Datong University(Natural Science Edition),2020,36(1):56-60.
    [51] 曹强. 巷道间电阻率法三维正反演研究[D]. 北京: 中国地质大学(北京), 2015.

    CAO Qiang. 3-D resistivity forward modeling and inversion between two mine roadways[D]. Beijing: China University of Geosciences, 2015.
    [52] 陶冬琴,韩德品. 防爆数字直流电法仪及其应用[J]. 煤田地质与勘探,1994,22(1):54-56.

    TAO Dongqin,HAN Depin. Explosion proof digital DC electrical meter and its application[J]. Coal Geology & Exploration,1994,22(1):54-56.
    [53] 王冰纯. 基于2n伪随机序列的矿井电法监测系统研制[D]. 北京: 煤炭科学研究总院, 2016.

    WANG Bingchun. Development of mine electrical monitoring system based on 2n pseudorandom sequence[D]. Beijing: China Coal Research Institute, 2016.
    [54] 靳德武,赵春虎,段建华,等. 煤层底板水害三维监测与智能预警系统研究[J]. 煤炭学报,2020,45(6):2256-2264.

    JIN Dewu,ZHAO Chunhu,DUAN Jianhua,et al. Research on 3D monitoring and intelligent early warning system for water hazard of coal seam floor[J]. Journal of China Coal Society,2020,45(6):2256-2264.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  333
  • HTML全文浏览量:  63
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-30
  • 修回日期:  2023-08-09
  • 网络出版日期:  2023-09-04

目录

    /

    返回文章
    返回