留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于虚实融合数据的悬臂式掘进机截割部故障预警技术研究

张旭辉 白琳娜 杨红强

张旭辉,白琳娜,杨红强. 基于虚实融合数据的悬臂式掘进机截割部故障预警技术研究[J]. 工矿自动化,2023,49(8):9-19.  doi: 10.13272/j.issn.1671-251x.2023050063
引用本文: 张旭辉,白琳娜,杨红强. 基于虚实融合数据的悬臂式掘进机截割部故障预警技术研究[J]. 工矿自动化,2023,49(8):9-19.  doi: 10.13272/j.issn.1671-251x.2023050063
ZHANG Xuhui, BAI Linna, YANG Hongqiang. Research on fault warning technology for cutting part of cantilever roadheader based on virtual and real fusion data[J]. Journal of Mine Automation,2023,49(8):9-19.  doi: 10.13272/j.issn.1671-251x.2023050063
Citation: ZHANG Xuhui, BAI Linna, YANG Hongqiang. Research on fault warning technology for cutting part of cantilever roadheader based on virtual and real fusion data[J]. Journal of Mine Automation,2023,49(8):9-19.  doi: 10.13272/j.issn.1671-251x.2023050063

基于虚实融合数据的悬臂式掘进机截割部故障预警技术研究

doi: 10.13272/j.issn.1671-251x.2023050063
基金项目: 国家自然科学基金项目(52104166);陕煤联合基金项目(2021JLM-03)。
详细信息
    作者简介:

    张旭辉 ( 1972—) ,男 ,陕西凤翔人 ,教授 ,博士 ,研究方向为煤矿机电设备智能检测与控制 , E-mail: zhangxh@xust.edu.cn

  • 中图分类号: TD421

Research on fault warning technology for cutting part of cantilever roadheader based on virtual and real fusion data

  • 摘要: 目前悬臂式掘进机截割部故障预警技术依赖于传统的数据采集方法,在掘进机截割部实际运行过程中存在信号获取困难、噪声较多等问题,导致掘进机截割部故障预测预警能力受到限制。针对上述问题,提出一种基于虚实融合数据的悬臂式掘进机截割部故障预警方法。对悬臂式掘进机截割部进行三维实体建模,利用机械系统动力学自动分析软件(ADAMS)获取截割部机械系统虚拟数据,构建其动力学仿真模型以获取虚拟数据,并采用余弦相似度函数表征其与真实数据的相似度,验证虚拟数据的可信度。将虚拟、真实数据分别采用贝叶斯估计与自适应互补加权融合方法进行相似关联与互补关联融合,获得虚实融合数据。针对传统自组织映射(SOM)神经网络学习效率易受学习速率的影响问题,建立了基于改进SOM神经网络的故障预警模型,引入关于时间的单调递减函数对SOM神经网络进行训练,在保证学习速率的同时,兼顾模型的稳定性。将融合数据输入基于SOM神经网络的故障预警模型以确定获胜神经元并进行权值调整,计算真实数据与获胜神经元间的距离并进行权值调整,进而实现故障预警。实验结果表明,改进SOM神经网络的平均运行效率可提高35.84%;基于虚实融合数据的悬臂式掘进机截割部故障预警方法可成功实现单一故障和复合故障的类型预测,其预测准确率达83.33%。

     

  • 图  1  悬臂式掘进机截割部故障预警总体方案

    Figure  1.  Overall scheme of fault early warning for cutting part of cantilever roadheader

    图  2  截割部行星减速器动力学仿真模型

    Figure  2.  Dynamics simulation model of planetary reducer in cutting part

    图  3  正常状态下行星减速器传动轴(输入端)幅值

    Figure  3.  Amplitude diagram of planetary reducer drive shaft (input end) under normal condition

    图  4  断齿状态下行星减速器传动轴(输入端)幅值

    Figure  4.  Amplitude diagram of transmission shaft (input end) of planetary reducer under broken tooth condition

    图  5  正常状态下行星减速器传动轴(输出端)幅值

    Figure  5.  Amplitude diagram of planetary reducer drive shaft (output) under normal condition

    图  6  断齿状态下行星减速器传动轴(输出端)幅值

    Figure  6.  Amplitude diagram of transmission shaft (output end) of planetary reducer under broken tooth condition

    图  7  截割部某时刻真实运行数据与虚拟运行数据对比

    Figure  7.  Comparison of real operation data and virtual operation data of cutting part at a certain time

    图  8  截割部行星减速器传动轴(输入端)加速度虚实数据相似关联融合

    Figure  8.  Similar correlation fusion of virtual and real acceleration data of transmission shaft (input end ) of planetary reducer of cutting part

    图  9  截割部行星减速器传动轴(输入端)加速度虚实数据互补关联融合

    Figure  9.  Complementary correlation fusion of virtual and real acceleration data of transmission shaft (input end ) of planetary reducer of cutting part

    图  10  基于改进SOM神经网络的故障预警模型

    Figure  10.  Fault early warning model based on improved self-organizing map neural network

    图  11  DDS实验平台

    Figure  11.  Drivetrain diagnostics simulator experimental platform

    图  12  不同迭代次数下的权值向量

    Figure  12.  Weight vector graph of different iteration times

    图  13  训练500次的样本聚类结果

    Figure  13.  Sample clustering result of 500 training times

    图  14  SOM神经网络相邻权重之间的距离曲线

    Figure  14.  Distance curve between adjacent weights of self-organizing map neural network

    图  15  改进前后不同迭代次数的平均运行时间

    Figure  15.  Average running time of different iterations before and after improvement

    表  1  余弦相似度对应变量相关性

    Table  1.   Cosine similarity corresponding variable correlation

    余弦相似度变量相关性
    $0 \leqslant \cos ( {\boldsymbol{X}}, {\boldsymbol{Y}}) < 0.4$无关
    $0.4 \leqslant \cos ( {\boldsymbol{X}}, {\boldsymbol{Y}}) < 0.8$相关
    $0.8 \leqslant \cos ( {\boldsymbol{X}}, {\boldsymbol{Y}}) < 1$强相关
    下载: 导出CSV

    表  2  悬臂式掘进机截割部故障类型

    Table  2.   Fault types of cutting part of cantilever roadheader

    截割部部位故障类型
    截割头截割头转速
    行星减速器传动轴(输入端)加速度
    传动轴(输出端)加速度
    轴承加速度
    太阳轮加速度
    截割电动机截割电动机转速
    下载: 导出CSV

    表  3  部分正常样本数据

    Table  3.   Partial sample data

    截割头
    转速/
    (m·s−1)
    输入轴
    加速度/
    (m·s−2)
    输出轴
    加速度/
    (m·s−2)
    轴承
    加速度/
    (m·s−2)
    太阳轮
    加速度/
    (m·s−2)
    截割电动
    机转速/
    (m·s−2)
    0.423 0.003 0.003 −0.073 0.285 1.000
    0.442 0 −0.001 −0.151 0.732 0.960
    0.426 −0.032 0.001 −0.115 0.978 0.040
    0.430 −0.011 0.003 −0.140 0.820 0.560
    0.434 0.037 0 −0.167 −0.080 0.600
    0.434 0.111 0.004 −0.097 −0.104 0.320
    0.438 −0.006 0.003 −0.218 −0.200 0.640
    0.446 0.121 0.002 −0.149 −0.292 0.720
    0.450 0.092 −0.002 −0.155 −0.728 0.240
    0.453 0.057 0.004 −0.176 −0.268 0.040
    下载: 导出CSV

    表  4  单一故障测试

    Table  4.   Single fault test

    类别截割头输入轴输出轴轴承太阳轮截割电动机
    样本获胜
    神经元
    210519110056
    测试获胜
    神经元
    10
    下载: 导出CSV

    表  5  复合故障测试

    Table  5.   Composite fault testing

    类别截割头输入轴输出轴轴承太阳轮截割电动机
    样本获胜神经元210519110056
    测试获胜神经元1099
    下载: 导出CSV

    表  6  改进前后SOM神经网络不同迭代次数下的运行时间

    Table  6.   Running time of self-organizing map neural network under different iteration times before and after improvement

    迭代次数单次运行时间/s平均时间/s
    第1次第2次第3次第4次第5次
    10改进前0.05360.06180.05320.05340.05400.0552
    改进后0.05320.04340.03840.04120.04540.0443
    100改进前0.20980.19630.20730.19940.21490.2055
    改进后0.12970.12360.13650.13570.12570.1302
    200改进前0.39760.36420.36600.36820.37000.3732
    改进后0.21540.19040.21050.20380.20660.2053
    500改进前0.86370.85710.83390.83370.83850.8454
    改进后0.48390.49900.49020.49390.48370.4901
    下载: 导出CSV
  • [1] 毛君,董钰峰,卢进南,等. 巷道掘进截割钻进先进技术研究现状及展望[J]. 煤炭学报,2021,46(7):2084-2099.

    MAO Jun,DONG Yufeng,LU Jinnan,et al. Research status and prospect of advanced technology of roadway excavation cutting and drilling equipment[J]. Journal of China Coal Society,2021,46(7):2084-2099.
    [2] 耿晋杰. 掘进机截割部故障分析与优化设计[J]. 西部探矿工程,2020,32(9):160-161.

    GENG Jinjie. Fault analysis and optimization design of roadheader cutting unit[J]. West-China Exploration Engineering,2020,32(9):160-161.
    [3] 吴晋军. 悬臂式掘进机液压故障诊断系统设计[J]. 液压气动与密封,2022,42(8):86-90.

    WU Jinjun. Design of hydraulic fault diagnosis system for roadheader[J]. Hydraulics Pneumatics & Seals,2022,42(8):86-90.
    [4] 盖巍巍,席亚兵,樊志家. 掘进机回转台开裂故障分析及改进[J]. 矿山机械,2021,49(3):18-21.

    GAI Weiwei,XI Yabing,FAN Zhijia. Analysis on cracking fault of rotary table of roadheader and improvement[J]. Mining & Processing Equipment,2021,49(3):18-21.
    [5] 吉昌生. 煤矿井下掘进机机电设备故障诊断及维护[J]. 采矿技术,2018,18(6):122-123.

    JI Changsheng. Fault diagnosis and maintenance of mechanical and electrical equipment of underground roadheader in coal mine[J]. Mining Technology,2018,18(6):122-123.
    [6] 蒙康,滕伟,彭迪康,等. 运行机理与数据双驱动的风电齿轮箱系统故障预警[J]. 中国机械工程,2023,34(12):1476-1485.

    MENG Kang,TENG Wei,PENG Dikang,et al. Operating mechanism and data driven approach for fault alarm of wind turbine gearbox systems[J]. China Mechanical Engineering,2023,34(12):1476-1485.
    [7] 刘送永,刘强. 巷道掘进机健康管理研究现状及展望[J]. 工矿自动化,2021,47(2):32-37.

    LIU Songyong,LIU Qiang. Research status and prospect of roadheader health management[J]. Industry and Mine Automation,2021,47(2):32-37.
    [8] 张天瑞,魏铭琦,刘彬. 全断面掘进机健康管理系统的建模与仿真[J]. 中国工程机械学报,2019,17(3):231-237.

    ZHANG Tianrui,WEI Mingqi,LIU Bin. System modeling and simulation for health management of tunnel boring machine[J]. Chinese Journal of Construction Machinery,2019,17(3):231-237.
    [9] 张境麟,姚钰鹏,冯银辉,等. 故障诊断预警系统在煤炭开采的应用[J]. 煤炭科学技术,2021,49(增刊1):175-182.

    ZHANG Jinglin,YAO Yupeng,FENG Yinhui,et al. Application of fault diagnosis and early warning system in coal mining[J]. Coal Science and Technology,2021,49(S1):175-182.
    [10] 韩宝宏,闫明胜,段鹏飞,等. 基于SOM−MQE模型的设备故障预警方法[J]. 工业技术创新,2021,8(1):74-78.

    HAN Baohong,YAN Mingsheng,DUAN Pengfei,et al. Equipment fault warning method based on SOM-MQE model[J]. Industrial Technology Innovation,2021,8(1):74-78.
    [11] JI Xiaodong, YANG Yang, QU Yuanyuan, et al. Health diagnosis of roadheader based on reference manifold learning and improved K-means[J/OL]. Shock and Vibration, 2021. https://www.hindawi.com/journals/sv/2021/6311795/.
    [12] FAN Yuhao, QIAN Chenying. Research on fault early warning technology of wind turbine main bearing by stacked auto encoder[J/OL]. Journal of Physics: Conference Series, 2021, 2033(1). https://iopscience.iop.org/article/10.1088/1742-6596/2033/1/012112/pdf.
    [13] 王炳效. 掘进机截割头故障分析及改进方案[J]. 价值工程,2015,34(17):115-116. doi: 10.14018/j.cnki.cn13-1085/n.2015.17.045

    WANG Bingxiao. Analysis on the cutting head fault of boring machine and the improvement program[J]. Value Engineering,2015,34(17):115-116. doi: 10.14018/j.cnki.cn13-1085/n.2015.17.045
    [14] 王福忠,田晓盈,张丽. 悬臂式掘进机截割机构状态诊断策略研究[J]. 计算机仿真,2015,32(5):390-394. doi: 10.3969/j.issn.1006-9348.2015.05.087

    WANG Fuzhong,TIAN Xiaoying,ZHANG Li. State diagnosis strategy for boring machine cutting institutions[J]. Computer Simulation,2015,32(5):390-394. doi: 10.3969/j.issn.1006-9348.2015.05.087
    [15] 郝锦龙,董洪全. 掘进机截割部减速器动力学建模及行星架结构强度分析[J]. 煤矿机械,2020,41(10):87-90. doi: 10.13436/j.mkjx.202010027

    HAO Jinlong,DONG Hongquan. Dynamic modeling and strength analysis of planet frame structure of roadheader cutting part reducer[J]. Coal Mine Machinery,2020,41(10):87-90. doi: 10.13436/j.mkjx.202010027
    [16] 孙英. 掘进机整机动力学分析及电控箱减振研究[D]. 太原: 太原理工大学, 2016.

    SUN Ying. Research on dynamical analysis of road-header and vibration reduction about the electric cabinet[D]. Taiyuan: Taiyuan University of Technology, 2016.
    [17] 贾科,郑黎明,毕天姝,等. 基于余弦相似度的风电场站送出线路纵联保护[J]. 中国电机工程学报,2019,39(21):6263-6275.

    JIA Ke,ZHENG Liming,BI Tianshu,et al. Pilot protection based on cosine similarity for transmission line connected to wind farms[J]. Proceedings of the CSEE,2019,39(21):6263-6275.
    [18] 耿志强,胡海霞,韩永明. 基于余弦相似度的复杂网络故障检测方法及应用[J]. 北京化工大学学报(自然科学版),2017,44(2):87-94.

    GENG Zhiqiang,HU Haixia,HAN Yongming. A complex network fault detection method based on cosine similarity and its application[J]. Journal of Beijing University of Chemical Technology(Natural Science Edition),2017,44(2):87-94.
    [19] 胡津铭,赵戈,张艳. 基于改进SOM神经网络的移动警务终端流量监测方法研究[J]. 信息网络安全,2021(增刊1):109-112.

    HU Jinming,ZHAO Ge,ZHANG Yan. Research on the traffic monitoring method of mobile police terminal based on improved SOM neural network[J]. Netinfo Security,2021(S1):109-112.
    [20] 申屠晗,彭冬亮,薛安克. 最小熵反馈式变结构多模型融合算法[J]. 控制理论与应用,2013,30(3):372-378.

    SHEN Tuhan,PENG Dongliang,XUE Anke. Minimum entropy and feedback structure-based algorithm for variable structure multi-model fusion[J]. Control Theory & Applications,2013,30(3):372-378.
    [21] 刘达,陈松灿. 基于高斯神经元的自组织映射网络研究[J]. 数据采集与处理,2023,38(1):85-92.

    LIU Da,CHEN Songcan. Research on self-organizing map network based on gaussian neuron[J]. Journal of Data Acquisition and Processing,2023,38(1):85-92.
    [22] 吴钱昊. 基于数字孪生车间的生产车间设备监控和设备故障预警方法研究[D]. 合肥: 合肥工业大学, 2020.

    WU Qianhao. Research on methods for equipment monitoring and equipment fault early warning of production workshop based on digital twin workshop[D]. Hefei: Hefei University of Technology, 2020.
  • 加载中
图(15) / 表(6)
计量
  • 文章访问数:  1103
  • HTML全文浏览量:  57
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-18
  • 修回日期:  2023-07-26
  • 网络出版日期:  2023-09-04

目录

    /

    返回文章
    返回