Numerical simulation of the influence of lap length on the load-bearing capacity of steel wire rope core conveyor belt joints
-
摘要:
输送带接头区域钢丝绳的抽出力是衡量接头承载能力的重要指标。目前针对钢丝绳芯输送带接头的研究主要集中在接头的结构参数、硫化工艺及胶料的粘合性能,并没有指出搭接长度对接头承载能力的影响。为研究搭接长度对钢丝绳芯输送带接头承载能力的影响,以st1250型钢丝绳芯输送带为研究对象,取输送带接头处单根钢丝绳部分建立接头模型,采用双线型内聚力模型模拟钢丝绳与橡胶的胶接状态,并通过切向拉剪试验与法向拉伸试验获得模型参数。将双线型内聚力模型与钢丝绳−橡胶接触界面相结合,对接头单根钢丝绳从橡胶中脱粘抽出的损伤演化过程进行仿真分析,发现接头损伤演化过程分为线性加载、损伤萌生、损伤扩展与完全失效4个阶段,且接头损伤失效曲线与双线型内聚力模型牵引力−位移曲线具有较好的一致性,验证了双线型内聚力模型可较好地模拟钢丝绳芯输送带接头损伤失效过程。对不同搭接长度的接头模型进行了仿真,得出搭接长度为350~750 mm时,随着搭接长度增大,接头刚度总体呈非线性增大,接头橡胶所受最大剪应力呈递减趋势,从而确定了接头搭接长度范围应控制在350~750 mm。对不同钢丝绳直径下搭接长度对接头承载能力的影响进行了仿真,结果表明:钢丝绳抽出力随搭接长度增大总体呈非线性递增;钢丝绳直径越大,接头钢丝绳抽出力随搭接长度增大的涨幅越大。拟合得到了不同钢丝绳直径下接头搭接长度与单根钢丝绳抽出力之间的函数关系,为不同承载能力要求下接头搭接长度的合理化选择提供了理论依据。
Abstract:The drawing force of the steel wire rope in the joint area of the conveyor belt is an important indicator to measure the bearing capacity of the joint. At present, research on the joint of steel wire rope core conveyor belt mainly focuses on the structural parameters of the joint, vulcanization process, and adhesive performance of the rubber material. It has not pointed out the influence of lap length on the load-bearing capacity of the joint. To study the influence of lap length on the load-bearing capacity of steel wire rope core conveyor belt joints, the st1250 steel wire rope core conveyor belt is taken as the research object. A joint model is established by taking a single steel wire rope part at the conveyor belt joint. The bilinear cohesive zone model is used to simulate the bonding state between the steel wire rope and rubber. The model parameters are obtained through tangential tensile shear tests and normal tensile tests. By combining the bilinear cohesive zone model with the steel wire rope rubber contact interface, a simulation analysis is conducted on the damage evolution process of a single steel wire rope detached from rubber in a joint. It is found that the joint damage evolution process can be divided into four stages: linear loading, damage initiation, damage propagation, and complete failure. Moreover, the joint damage failure curve is consistent with the traction displacement curve of the bilinear cohesive zone model. It verifies that the bilinear cohesive zone model can effectively simulate the damage failure process of steel wire rope core conveyor belt joints. Simulation is conducted on joint models with different lap lengths. It is found that as the lap length increases from 350 mm to 750 mm, the overall stiffness of the joint shows a non-linear increase, and the maximum shear stress on the joint rubber shows a decreasing trend. Therefore, it is determined that the range of lap length should be controlled within 350 mm to 750 mm. The influence of lap length on joint bearing capacity under different wire rope diameters is simulated. The results show that the drawing force of wire rope increases nonlinearly with the increase of lap length. The larger the diameter of the steel wire rope, the greater the increase in the drawing force of the joint steel wire rope with the increase of the lap length. The functional relationship between joint lap length and single wire rope drawing force under different wire rope diameters is fitted, providing a theoretical basis for the rational selection of joint lap length under different bearing capacity requirements.
-
Key words:
- steel wire rope core conveyor belt /
- joint /
- lap length /
- load-bearing capacity /
- cohesive zone model /
- drawing force
-
表 1 不同型号钢丝绳芯输送带接头参数
Table 1. Joint parameters of different types of steel cord conveyor belt
型号 搭接形式 最小阶梯长度/mm 接头总长度/mm st630 一阶 250 550 st1000 一阶 300 600 st1250 一阶 350 650 st1600 二阶 350 1 050 st2000 二阶 400 1 150 st2500 二阶 500 1 350 st3500 三阶 650 2 350 st4500 三阶 800 2 800 st5000 四阶 900 4 050 表 2 双线型内聚力模型参数
Table 2. Bilinear cohesive zone model parameters
法向最大应力/MPa 切向最大
应力/MPa法向内聚
能/J切向内聚
能/J人工阻尼系数 1.4 1.107 0.465 0.532 0.001 表 3 钢丝绳芯输送带结构参数
Table 3. Structural parameters of steel cord conveyor belt mm
型号 钢丝绳直径 钢丝绳间距 覆盖胶厚度 带厚 st1250 4.5 12 6 17 -
[1] 宋伟刚. 通用带式输送机设计[M]. 北京:机械工业出版社,2006:65-66.SONG Weigang. Universal belt conveyor design[M]. Beijing:China Machine Press,2006:65-66. [2] SONG Weigang,SHANG Wenjie,LI Xiaosen. Finite element analysis of steel cord conveyor belt splice[C]. International Technology and Innovation Conference,Xi'an,2009:1-6. [3] 范丽. 影响钢丝绳芯胶带接头强度的因素分析[J]. 中国新技术新产品,2019(12):76-78.FAN Li. Analysis of factors influencing the strength of wire rope core belt joint[J]. New Technology & New Products of China,2019(12):76-78. [4] 龙新雨. 基于Abaqus的钢丝绳芯输送带接头变形的有限元分析[D]. 天津:天津工业大学,2019.LONG Xinyu. Finite element analysis of steel wire conveyor belt joint deformation based on Abaqus[D]. Tianjin:Tiangong University,2019. [5] 申立芳. 钢丝绳芯输送带钢丝绳抽动的有限元分析[D]. 天津:天津工业大学,2018.SHEN Lifang. Finite element analysis of wire rope pumping in wire rope core conveyor belt[D]. Tianjin:Tiangong University,2018. [6] 姜航旗. 钢丝绳芯输送带接头变形与强度实验及分析研究[D]. 天津:天津工业大学,2018.JIANG Hangqi. Experiment and analysis on deformation and strength of steel wire conveyor belt joint[D]. Tianjin:Tiangong University,2018. [7] 李永红. 钢丝绳橡胶输送带动态特性与变形阻力分析[D]. 阜新:辽宁工程技术大学,2017.LI Yonghong. The analysis on dynamic characteristics and deformation resistance of steel core rubber conveyor belt[D]. Fuxin:Liaoning Technical University,2017. [8] 樊鹏. 基于ADAMS的带式输送机动态特性的仿真分析[J]. 农业技术与装备,2019(5):82-83.FAN Peng. Simulation analysis of dynamic characteristics of belt conveyor based on ADAMS[J]. Agricultural Technology & Equipment,2019(5):82-83. [9] 宋佳辉. 钢绳芯输送带接头硫化及芯胶预成型特性研究[D]. 太原:太原理工大学,2022.SONG Jiahui. Research on vulcanization and core rubber preforming characteristics of steel cord conveyor belt joints[D]. Taiyuan:Taiyuan University of Technology,2022. [10] 张泽文,潘永智,张天一,等. 金属基复合材料界面与内聚力模型的研究进展[J]. 宇航材料工艺,2022,52(3):1-11. doi: 10.12044/j.issn.1007-2330.2022.03.001ZHANG Zewen,PAN Yongzhi,ZHANG Tianyi,et al. Research progress on interface of metal matrix composites and cohesive model[J]. Aerospace Materials & Technology,2022,52(3):1-11. doi: 10.12044/j.issn.1007-2330.2022.03.001 [11] 卢子兴. 复合材料界面的内聚力模型及其应用[J]. 固体力学学报,2015,36(增刊1):85-94.LU Zixing. A simple review for cohesive zone models of composite interface and their applications[J]. Chinese Journal of Solid Mechanics,2015,36(S1):85-94. [12] 周亮,李晓雷,陈文义. 黏接界面各本构模型之间形状参数的关系研究[J]. 河北工业大学学报,2022,51(1):35-41.ZHOU Liang,LI Xiaolei,CHEN Wenyi. Study on the relationship between shape parameters of the bonding interface constitutive models[J]. Journal of Hebei University of Technology,2022,51(1):35-41. [13] PRANAVI D,RAJAGOPAL A,REDDY J N. Interaction of anisotropic crack phase field with interface cohesive zone model for fiber reinforced composites[J]. Composite Structures,2021,270. DOI: 10.1016/j.compstruct.2021.114038. [14] MOON J H,JANG Y Y,HUH N S,et al. Application of cohesive zone model to large scale circumferential through-wall and 360° surface cracked pipes under static and dynamic loadings[J]. Nuclear Engineering and Technology,2021,53(3):974-987. doi: 10.1016/j.net.2020.07.041 [15] 赵天,李营,张超,等. 高性能航空复合材料结构的关键力学问题研究进展[J]. 航空学报,2022,43(6):63-105.ZHAO Tian,LI Ying,ZHANG Chao,et al. Fundamental mechanical problems in high-performance aerospace composite structures:state-of-art review[J]. Acta Aeronautica et Astronautica Sinica,2022,43(6):63-105. [16] GB/T 9770—2013 普通用途钢丝绳芯输送带[SGB/T 9770-2013 Steel cord conveyor belts for general use[S [17] 刘玉辉. 钢丝绳内在特性和力学性能的研究[D]. 太原:太原理工大学,2014.LIU Yuhui. Research on inherent properties and mechanical performances of wire rope[D]. Taiyuan:Taiyuan University of Technology,2014. [18] 胡坚柯,陈吉丰,汪振宁,等. 基于Mooney−Rivlin模型的高水头伸缩式水封非线性仿真[J]. 中国农村水利水电,2022(4):215-220,228.HU Jianke,CHEN Jifeng,WANG Zhenning,et al. Nonlinear simulation of high head expansion water seal based on the Mooney-Rivlin model[J]. China Rural Water and Hydropower,2022(4):215-220,228. [19] 张良,李忠华,马新强. 橡胶Mooney−Rivlin超弹性本构模型的参数特性研究[J]. 噪声与振动控制,2018,38(增刊2):427-430.ZHANG Liang,LI Zhonghua,MA Xinqiang. Study on parameter characteristics of rubber Mooney-Rivlin model[J]. Noise and Vibration Control,2018,38(S2):427-430. [20] YUKSELER R F. Local and nonlocal buckling of Mooney-Rivlin rods[J]. European Journal of Mechanics-A/Solids,2019,78(2). DOI: 10.1016/j.euromechsol.2019.103816. [21] 庄茁. 基于ABAQUS的有限元分析与应用[M]. 北京:清华大学出版社,2009.ZHUANG Zhuo. Finite element analysis and application based ABAQUS[M]. Beijing:Tsinghua University Press,2009.