留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进深度森林的采煤机拖拽电缆挤压力识别方法

石港 雷志鹏

石港,雷志鹏. 基于改进深度森林的采煤机拖拽电缆挤压力识别方法[J]. 工矿自动化,2023,49(10):8-16, 51.  doi: 10.13272/j.issn.1671-251x.2023050042
引用本文: 石港,雷志鹏. 基于改进深度森林的采煤机拖拽电缆挤压力识别方法[J]. 工矿自动化,2023,49(10):8-16, 51.  doi: 10.13272/j.issn.1671-251x.2023050042
SHI Gang, LEI Zhipeng. Recognition method of the squeezing force of shearer dragging cable based on improved deep forest[J]. Journal of Mine Automation,2023,49(10):8-16, 51.  doi: 10.13272/j.issn.1671-251x.2023050042
Citation: SHI Gang, LEI Zhipeng. Recognition method of the squeezing force of shearer dragging cable based on improved deep forest[J]. Journal of Mine Automation,2023,49(10):8-16, 51.  doi: 10.13272/j.issn.1671-251x.2023050042

基于改进深度森林的采煤机拖拽电缆挤压力识别方法

doi: 10.13272/j.issn.1671-251x.2023050042
基金项目: 国家自然科学基金资助项目(51977137)。
详细信息
    作者简介:

    石港(1997—),男,山西阳泉人,硕士,主要研究方向为电缆故障局部放电特性与故障诊断,E-mail:sg18735160898@163.com

    通讯作者:

    雷志鹏(1983—),男,山西太原人,副教授,博士,主要从事矿用智能电器和电气绝缘测试方面的研究工作,E-mail:leizhipeng@163.com

  • 中图分类号: TD611

Recognition method of the squeezing force of shearer dragging cable based on improved deep forest

  • 摘要: 采煤机拖拽电缆在运行中常受到外部挤压力作用,致使电缆绝缘发生局部放电,影响电缆使用寿命。现有研究侧重于局部放电规律和严重程度的分析,无法评估乙丙橡胶绝缘电缆所承受应力的大小,导致无法掌握矿用乙丙橡胶绝缘电缆的运行状态。针对该问题,提出一种基于改进深度森林(S−DF)的采煤机拖拽电缆挤压力识别方法。通过实验测量了不同挤压力下采煤机拖拽电缆的局部放电,分析了局部放电谱图、平均放电电流、最大放电量和击穿场强随所施挤压力和电压的变化规律,计算了局部放电的统计特征参量。基于统计特征参量,采用S−DF模型对挤压力大小进行识别。S−DF模型在深度森林(DF)中引入Stacking集成算法,以提升识别准确率。研究结果表明:不同电压下,最大放电量和平均放电电流均随着挤压力的增大而减小;击穿场强随着挤压力的增大呈先增大后减小的趋势,挤压力大于2 000 N时的击穿场强小于未挤压时的击穿场强;不同挤压力下的局部放电统计特征参量可作为放电指纹,S−DF模型能准确地识别电缆所受挤压力的大小,且识别率高于其他传统分类算法。

     

  • 图  1  局部放电测量装置原理

    Figure  1.  Principle of partial discharge measurement device

    图  2  介电强度实验电路

    Figure  2.  Dielectric strength experimental circuit

    图  3  不同挤压力下乙丙橡胶绝缘电缆的PRPD图

    Figure  3.  PRPD diagram of ethylene propylene rubber cable under different extrusion pressures

    图  4  击穿场强与挤压力的关系

    Figure  4.  Relationship between puncture core field intensity and extrusion pressure

    图  5  最大放电量和平均放电电流与挤压力的关系

    Figure  5.  Relationship between maximum discharge, average discharge current and extrusion pressure

    图  6  不同挤压力下的统计特征参量柱状图

    Figure  6.  Histograms of statistical characteristic parameters under different extrusion pressures

    图  7  Stacking集成算法学习过程

    Figure  7.  Learning process of Stacking ensemble algorithm

    图  8  多粒度扫描原理

    Figure  8.  Principle of multi granularity scanning

    图  9  级联森林结构原理

    Figure  9.  Principle of cascading forest structure

    图  10  S−DF结构

    Figure  10.  Structure of Stacking-deep forest

    图  11  训练次数对准确率的影响

    Figure  11.  The effect of training times on accuracy

    表  1  PRPD图统计特征参量

    Table  1.   Statistical characteristic parameters of PRPD diagram

    参数HqmaxφHqnφHnφHnq
    +++
    Sk
    Ku
    Peak
    Assy
    Cc
    下载: 导出CSV

    表  2  S−DF模型与DF模型识别准确率对比

    Table  2.   Comparison of recognition accuracy between S-DF model and DF model

    训练集与
    验证集之比
    识别准确率/%
    S−DFDF
    0.8∶0.294.2787.65
    0.5∶0.593.5586.85
    0.2∶0.888.6580.95
    下载: 导出CSV

    表  3  S−DF模型与随机森林、SVM识别准确率对比

    Table  3.   Comparison of recognition accuracy between S-DF model and random forest and SVM

    挤压力/N 识别准确率/%
    S−DF 随机森林 SVM
    0 85.20 87.54 85.52
    500 96.20 73.42 76.72
    1 000 95.60 78.12 74.73
    1 500 97.40 65.00 70.52
    2 000 96.20 85.83 86.73
    2 500 95.20 81.33 88.45
    平均值 94.27 78.54 80.46
    下载: 导出CSV
  • [1] 刘志华,崔彦捷,汲胜昌,等. 热机联合应力对油浸纸板绝缘及机械特性影响研究[J]. 电力工程技术,2020,39(5):126-132. doi: 10.12158/j.2096-3203.2020.05.018

    LIU Zhihua,CUI Yanjie,JI Shengchang,et al. Influence of thermo-mechanical combined stress on insulation and mechanical characteristics of oil-impregnated paperboard[J]. Electric Power Engineering Technology,2020,39(5):126-132. doi: 10.12158/j.2096-3203.2020.05.018
    [2] 彭倩,吴广宁,张星海,等. 机械应力对聚丙烯薄膜局部放电性能的影响[J]. 高电压技术,2008,34(6):1261-1266. doi: 10.13336/j.1003-6520.hve.2008.06.024

    PENG Qian,WU Guangning,ZHANG Xinghai,et al. Influence of mechanical stress on polypropylene film partial discharge[J]. High Voltage Engineering,2008,34(6):1261-1266. doi: 10.13336/j.1003-6520.hve.2008.06.024
    [3] 邹林,涂扬,孟永鹏,等. 界面压强和表面粗糙度对聚乙烯与硅橡胶界面的局部放电的影响[J]. 绝缘材料,2014,47(3):94-98,102. doi: 10.3969/j.issn.1009-9239.2014.03.024

    ZOU Lin,TU Yang,MENG Yongpeng,et al. Effects of interface pressure and surface roughness on the partial discharge between polyethylene and silicone rubber[J]. Insulating Materials,2014,47(3):94-98,102. doi: 10.3969/j.issn.1009-9239.2014.03.024
    [4] 路士杰. 温度和机械应力对环氧树脂绝缘件沿面闪络特性的影响[D]. 北京:华北电力大学,2020.

    LU Shijie. Effects of temperature and mechanical stress on surface flashover characteristics of epoxy resin insulation parts[D]. Beijing:North China Electric Power University,2020.
    [5] 崔彦捷,汲胜昌,祝令瑜,等. 机械应力对油浸绝缘纸板局部放电影响[J]. 电工技术学报,2021,36(12):2659-2666. doi: 10.19595/j.cnki.1000-6753.tces.191720

    CUI Yanjie,JI Shengchang,ZHU Lingyu,et al. Effect of mechanical stress on partial discharge of oil-impregnated pressboard[J]. Transactions of China Electrotechnical Society,2021,36(12):2659-2666. doi: 10.19595/j.cnki.1000-6753.tces.191720
    [6] 罗家成,高存法,戴相花. 机−电载荷对含裂纹介电材料局部放电的影响[C]. 2009年全国压电和声波理论及器件技术研讨会暨2009年全国频率控制技术年会,武汉,2009.

    LUO Jiacheng,GAO Cunfa,DAI Xianghua. The influence of mechanical-electric loads on partial discharge in dielectric material containing a crack[C]. 2009 National Piezoelectric and Acoustic Theory and Device Technology Seminar and 2009 National Frequency Control Technology Annual Conference,Wuhan,2009.
    [7] 林晨,吝伶艳,雷志鹏,等. 基于PDC的多应力老化乙丙橡胶电缆绝缘状态评估[J]. 绝缘材料,2020,53(1):70-75. doi: 10.16790/j.cnki.1009-9239.im.2020.01.013

    LIN Chen,LIN Lingyan,LEI Zhipeng,et al. State evaluation of multi-stress aged EPR cable insulation based on PDC[J]. Insulating Materials,2020,53(1):70-75. doi: 10.16790/j.cnki.1009-9239.im.2020.01.013
    [8] 王干军,李锦舒,吴毅江,等. 基于随机森林的高压电缆局部放电特征寻优[J]. 电网技术,2019,43(4):1329-1336. doi: 10.13335/j.1000-3673.pst.2018.2652

    WANG Ganjun,LI Jinshu,WU Yijiang,et al. Random forest based feature selection for partial discharge recognition of HV cables[J]. Power System Technology,2019,43(4):1329-1336. doi: 10.13335/j.1000-3673.pst.2018.2652
    [9] 唐炬,王静,李剑,等. 统计参数用于局部放电模式识别的研究[J]. 高电压技术,2002,28(8):4-6,37. doi: 10.3969/j.issn.1003-6520.2002.08.002

    TANG Ju,WANG Jing,LI Jian,et al. Statistical parameter method for PD pattern recognition[J]. High Voltage Engineering,2002,28(8):4-6,37. doi: 10.3969/j.issn.1003-6520.2002.08.002
    [10] 刘维功,王昊展,时振堂,等. 基于改进XGBoost算法的XLPE电缆局部放电模式识别研究[J]. 电测与仪表,2022,59(4):98-106. doi: 10.19753/j.issn1001-1390.2022.04.015

    LIU Weigong,WANG Haozhan,SHI Zhentang,et al. Research on partial discharge pattern recognition of XLPE cable based on improved XGBoost algorithm[J]. Electrical Measurement & Instrumentation,2022,59(4):98-106. doi: 10.19753/j.issn1001-1390.2022.04.015
    [11] 苏审言,张建德. 基于概率神经网络的变压器局部放电模式识别[J]. 电气自动化,2022,44(3):91-93. doi: 10.3969/j.issn.1000-3886.2022.03.028

    SU Shenyan,ZHANG Jiande. Pattern recognition of partial discharge of transformer based on probabilistic neural network[J]. Electrical Automation,2022,44(3):91-93. doi: 10.3969/j.issn.1000-3886.2022.03.028
    [12] 姚锐,惠萌,李俊,等. 基于随机森林的局部放电特征提取和优选研究[J]. 华北电力大学学报(自然科学版),2021,48(4):63-72. doi: 10.3969/j.ISSN.1007-2691.2021.04.08

    YAO Rui,HUI Meng,LI Jun,et al. Feature extraction and optimal selection based on random forest for partial discharges[J]. Journal of North China Electric Power University(Natural Science Edition),2021,48(4):63-72. doi: 10.3969/j.ISSN.1007-2691.2021.04.08
    [13] 马良玉,耿妍竹,梁书源,等. 基于Stacking多模型融合的风电机组齿轮箱油池温度异常预警[J/OL]. 中国电机工程学报:1-11[2023-09-25]. http://kns.cnki.net/kcms/detail/11.2107.TM.20230919.1048.004.html.

    MA Liangyu,GENG Yanzhu,LIANG Shuyuan,et al. Anomaly warning of wind turbine gearbox oil pool temperature based on Stacking fusion of multiple models[J/OL]. Proceedings of the CSEE:1-11[2023-09-25]. http://kns.cnki.net/kcms/detail/11.2107.TM.20230919.1048.004.html.
    [14] 霍晓占,刘延泉,周兴华,等. 基于改进灰色关联分析和Stacking算法的配电网线损预测研究[J/OL]. 华北电力大学学报(自然科学版):1-8[2023-10-18]. http://kns.cnki.net/kcms/detail/13.1212.tm.20231017.0853.002.html.

    HUO Xiaozhan,LIU Yanquan,ZHOU Xinghua,et al. Research on distribution network line loss prediction based on improved grey relational analysis and Stacking algorithm[J/OL]. Journal of North China Electric Power University(Natural Science Edition) :1-8[2023-10-18]. http://kns.cnki.net/kcms/detail/13.1212.tm.20231017.0853.002.html.
    [15] 孙林,郭嘉琪,朱雨晨,等. 基于Stacking集成和偏探索贝叶斯优化的特征选择[J/OL]. 山西大学学报(自然科学版):1-11[2023-10-18]. https://doi.org/10.13451/j.sxu.ns.2023143.

    SUN Lin,GUO Jiaqi,ZHU Yuchen,et al. Feature selection using Stacking integration and partial exploration Bayesian optimization[J/OL]. Journal of Shanxi University(Natural Science Edition) :1-11[2023-10-18]. https://doi.org/10.13451/j.sxu.ns.2023143.
    [16] 唐振浩,隋梦璇,曹生现. 基于组合时域特征提取和Stacking集成学习的燃煤锅炉NOx排放浓度预测[J/OL]. 中国电机工程学报:1-16[2023-10-18]. DOI: 10.13334/j.0258-8013.pcsee.230940.

    TANG Zhenhao,SUI Mengxuan,CAO Shengxian. Prediction of NOx emission concentration from coal-fired boilers based on combined time-domain feature extraction and Stacking ensemble learning[J/OL]. Proceedings of the CSEE:1-16 [2023-10-18]. DOI: 10.13334/j.0258-8013.pcsee.230940.
    [17] 金秀章,乔鹏,史德金. 基于mRMR-BO优化Stacking集成模型的NO_x浓度动态软测量[J]. 热力发电,2023,52(10):122-128. doi: 10.19666/j.rlfd.202302378

    JIN Xiuzhang,QIAO Peng,SHI Dejin. Dynamic soft measurement of NO_x concentration based on mRMR-BO Stacking ensemble model[J]. Thermal Power Generation,2023,52(10):122-128. doi: 10.19666/j.rlfd.202302378
    [18] 缪智伟,韦才敏. 基于多模型融合Stacking集成学习保险欺诈预测[J]. 汕头大学学报(自然科学版),2023,38(3):13-24. doi: 10.3969/j.issn.1001-4217.2023.03.003

    MIAO Zhiwei,WEI Caimin. Learning insurance fraud prediction based on multi-model fusion Stacking integration[J]. Journal of Shantou University(Natural Science Edition),2023,38(3):13-24. doi: 10.3969/j.issn.1001-4217.2023.03.003
    [19] 丁家满,吴晔辉,罗青波,等. 基于深度森林的轴承故障诊断方法[J]. 振动与冲击,2021,40(12):107-113. doi: 10.13465/j.cnki.jvs.2021.12.014

    DING Jiaman,WU Yehui,LUO Qingbo,et al. A fault diagnosis method of mechanical bearing based on the deep forest[J]. Journal of Vibration and Shock,2021,40(12):107-113. doi: 10.13465/j.cnki.jvs.2021.12.014
    [20] 窦希杰,王世博,刘后广,等. 基于EMD特征提取与随机森林的煤矸识别方法[J]. 工矿自动化,2021,47(3):60-65. doi: 10.13272/j.issn.1671-251x.2020100038

    DOU Xijie,WANG Shibo,LIU Houguang,et al. Coal and gangue identification method based on EMD feature extraction and random forest[J]. Industry and Mine Automation,2021,47(3):60-65. doi: 10.13272/j.issn.1671-251x.2020100038
    [21] 王艺霏,祝继华,刘新媛等. 联合深度森林与异质集成的标记分布学习方法[J/OL]. 软件学报:1-18[2023-10-18]. DOI: 10.13328/j.cnki.jos.006936.

    WANG Yifei,ZHU Jihua,LIU Xinyuan,et al. Label distribution learning based on deep forest and heterogeneous ensemble[J/OL]. Journal of Software:1-18[2023-10-18]. DOI: 10.13328/j.cnki.jos.006936.
    [22] 周政雷,陈俊,潘俊涛,等. 基于并行深度森林的配用电通信网络异常流量检测[J]. 华东师范大学学报(自然科学版),2023(5):122-134. doi: 10.3969/j.issn.1000-5641.2023.05.011

    ZHOU Zhenglei,CHEN Jun,PAN Juntao,et al. Parallel deep-forest-based abnormal traffic detection for power distribution communication networks[J]. Journal of East China Normal University(Natural Science),2023(5):122-134. doi: 10.3969/j.issn.1000-5641.2023.05.011
    [23] 毛伊敏,周展,陈志刚. 基于Spark和三路交互信息的并行深度森林算法[J]. 通信学报,2023,44(8):228-240.

    MAO Yimin,ZHOU Zhan,CHEN Zhigang. Parallel deep forest algorithm based on Spark and three-way interactive information[J]. Journal on Communications,2023,44(8):228-240.
    [24] 卢喜东,段哲民,钱叶魁,等. 一种基于深度森林的恶意代码分类方法[J]. 软件学报,2020,31(5):1454-1464. doi: 10.13328/j.cnki.jos.005660

    LU Xidong,DUAN Zhemin,QIAN Yekui,et al. Malicious code classification method based on deep forest[J]. Journal of Software,2020,31(5):1454-1464. doi: 10.13328/j.cnki.jos.005660
    [25] 刘东超,熊慕文,高森,等. 基于深度森林模型的GIS局部放电模式识别[J]. 电气传动,2022,52(9):12-18.

    LIU Dongchao,XIONG Muwen,GAO Sen,et al. Partial discharge pattern recognition of GIS based on deep forest model[J]. Electric Drive,2022,52(9):12-18.
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  235
  • HTML全文浏览量:  79
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-11
  • 修回日期:  2023-10-19
  • 网络出版日期:  2023-10-24

目录

    /

    返回文章
    返回