留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于二次特征提取的煤矿巷道表面点云数据精简方法

陈建华 马宝 王蒙

陈建华,马宝,王蒙. 基于二次特征提取的煤矿巷道表面点云数据精简方法[J]. 工矿自动化,2023,49(12):114-120.  doi: 10.13272/j.issn.1671-251x.2023050029
引用本文: 陈建华,马宝,王蒙. 基于二次特征提取的煤矿巷道表面点云数据精简方法[J]. 工矿自动化,2023,49(12):114-120.  doi: 10.13272/j.issn.1671-251x.2023050029
CHEN Jianhua, MA Bao, WANG Meng. A method for simplifying surface point cloud data of coal mine roadways based on secondary feature extraction[J]. Journal of Mine Automation,2023,49(12):114-120.  doi: 10.13272/j.issn.1671-251x.2023050029
Citation: CHEN Jianhua, MA Bao, WANG Meng. A method for simplifying surface point cloud data of coal mine roadways based on secondary feature extraction[J]. Journal of Mine Automation,2023,49(12):114-120.  doi: 10.13272/j.issn.1671-251x.2023050029

基于二次特征提取的煤矿巷道表面点云数据精简方法

doi: 10.13272/j.issn.1671-251x.2023050029
基金项目: 中国神华能源股份有限公司神东煤炭分公司科研项目(CEZB220305320)。
详细信息
    作者简介:

    陈建华(1985—),男,陕西神木人,工程师,硕士,现主要从事采掘工程及地质防治水管理工作,E-mail:366883275@qq.com

  • 中图分类号: TD76

A method for simplifying surface point cloud data of coal mine roadways based on secondary feature extraction

  • 摘要:

    采用三维激光扫描技术提取的煤矿巷道表面点云数据量大且存在较多的冗余数据,而现有点云数据精简方法存在大数量级点云处理过程中细节保留不足的问题。针对上述问题,提出了一种基于二次特征提取的煤矿巷道表面点云数据精简方法。首先对采集到的原始巷道点云数据进行去噪预处理;其次建立K−d树,并利用主成分分析法对去噪后点云数据估算来拟合邻域平面的法向量;然后通过较小的法向量夹角阈值对点云进行初步的特征区域与非特征区域划分,保留特征区域并随机下采样非特征区域,接着依据较大的法向量夹角阈值将特征区域点云划分为特征点和非特征点,并对非特征点进行体素随机采样;最后将2次点云精简结果与特征点合并得到最终的精简数据。仿真结果表明,该方法在百万数据量级点云和高精简率条件下,相较曲率精简方法、随机精简方法和栅格精简方法,在特征保留和重构精度方面都取得了更好的效果,三维重构后计算所得标准偏差平均可低于相同精简率下其他方法30%左右。

     

  • 图  1  煤矿巷道表面点云数据精简方法流程

    Figure  1.  Flowchart of point cloud data simplification method of coal mine roadway surface

    图  2  基于法向量夹角的特征区域选取原理

    Figure  2.  Principle of feature area selection based on normal vector angle

    图  3  数据集整体及截取部分

    Figure  3.  Whole data set and intercepted partial parts

    图  4  精简率为50%的简化及三维重建结果

    Figure  4.  Simplification and 3D reconstruction results with reduction rate of 50%

    图  6  精简率为10%的简化及三维重建结果

    Figure  6.  Simplification and 3D reconstruction results with reduction rate of 10%

    图  5  精简率为30%的简化及三维重建结果

    Figure  5.  Simplification and 3D reconstruction results with reduction rate of 30%

    表  1  不同特征提取次数下最大偏差与标准偏差

    Table  1.   The maximum deviation and standard deviation under different feature extraction times

    特征提取方式精简率/%最大偏差(正向/负向)/m标准偏差/m
    一次特征提取101.340 6/−2.807 20.038 93
    二次特征提取0.918 3/−0.748 40.036 44
    一次特征提取303.049 9/−2.398 70.035 16
    二次特征提取2.754 1/−2.375 90.033 27
    一次特征提取501.582 8/−1.835 10.021 50
    二次特征提取2.739 3/−2.226 80.020 66
    下载: 导出CSV

    表  2  不同精简方法下最大偏差与标准偏差

    Table  2.   The maximum deviation and standard deviation under different simplification methods

    精简方法精简率/%最大偏差(正向/负向)/m标准偏差/m
    曲率精简方法102.800 9/−1.894 90.057 88
    随机精简方法2.452 6/−2.663 30.060 37
    栅格精简方法1.310 7/−3.052 40.055 09
    本文方法0.918 3/−0.748 40.036 44
    曲率精简方法303.265 2/−2.712 20.043 39
    随机精简方法2.428 1/−2.465 90.037 65
    栅格精简方法3.268 8/−1.856 20.039 15
    本文方法2.754 1/−2.375 90.033 27
    曲率精简方法503.151 3/−1.562 20.025 77
    随机精简方法2.848 6/−1.216 00.020 82
    栅格精简方法2.857 8/−1.550 10.033 63
    本文方法2.739 3/−2.226 80.020 66
    下载: 导出CSV
  • [1] 俞艳波,李小松,苏海华,等. 便携式三维激光扫描技术在矿山地下巷道可视化建模中的应用[J]. 北京测绘,2022,36(12):1703-1708.

    YU Yanbo,LI Xiaosong,SU Haihua,et al. Application of portable 3D laser scanning technology in visualization modeling of mine underground tunnel[J]. Beijing Surveying and Mapping,2022,36(12):1703-1708.
    [2] 朱杭琦,徐亮亮,方秀友,等. 基于三维激光扫描技术的地铁隧道健康检测与安全性评估应用[J]. 城市地质,2022,17(4):493-500. doi: 10.3969/j.issn.1007-1903.2022.04.014

    ZHU Hangqi,XU Liangliang,FANG Xiuyou,et al. Health detection and safety assessment of subway tunnel based on 3D laser scanning technology[J]. Urban Geology,2022,17(4):493-500. doi: 10.3969/j.issn.1007-1903.2022.04.014
    [3] 高帅,马全明,符新新,等. 三维激光扫描技术在地铁隧道调线调坡测量中的应用研究[J]. 城市勘测,2022(5):146-148.

    GAO Shuai,MA Quanming,FU Xinxin,et al. Research on route and gradient adjustment measurement of 3D laser scanning in metro tunnel[J]. Urban Geotechnical Investigation & Surveying,2022(5):146-148.
    [4] 宋成航,李晋儒,刘冠杰. 利用特征点采样一致性改进ICP算法点云配准方法[J]. 北京测绘,2021,35(3):317-322.

    SONG Chenghang,LI Jinru,LIU Guanjie. Point cloud registration method using feature point sampling consistency initial alignment and improved ICP algorithm[J]. Beijing Surveying and Mapping,2021,35(3):317-322.
    [5] 彭海驹,严科文,林松,等. 融合kmeans聚类与Hausdorff距离的点云精简算法改进[J]. 地理空间信息,2022,20(8):59-63. doi: 10.3969/j.issn.1672-4623.2022.08.014

    PENG Haiju,YAN Kewen,LIN Song,et al. Point cloud simplification improved algorithm integrating K-means clustering and Hausdorff distance[J]. Geospatial Information,2022,20(8):59-63. doi: 10.3969/j.issn.1672-4623.2022.08.014
    [6] 刘源,左小清,李勇发,等. 使用冯米塞斯分布提取特征的点云精简方法[J]. 激光与光电子学进展,2023,60(2):341-351.

    LIU Yuan,ZUO Xiaoqing,LI Yongfa,et al. Point cloud simplification method using Von Mises-Fisher distribution to extract features[J]. Laser & Optoelectronics Progress,2023,60(2):341-351.
    [7] 张亦芳,李立,刘光帅. 基于特征显著性的点云自适应精简[J]. 计算机工程与设计,2021,42(8):2211-2217.

    ZHANG Yifang,LI Li,LIU Guangshuai. Adaptive simplification of point cloud based on feature saliency[J]. Computer Engineering and Design,2021,42(8):2211-2217.
    [8] SHI Zhiyuan,XU Weiming,MENG Hao. A point cloud simplification algorithm based on weighted feature indexes for 3D scanning sensors[J]. Sensors,2022,22(19):1-21. doi: 10.1109/JSEN.2022.3206996
    [9] 曹爽,赵显富,马文. 一种基于曲面变化的工业构件点云数据精简方法[J]. 测绘通报,2018(11):20-24.

    CAO Shuang,ZHAO Xianfu,MA Wen. A simplification method of point cloud data of industrial components based on surface variation[J]. Bulletin of Surveying and Mapping,2018(11):20-24.
    [10] 李琪琪,花向红,赵不钒,等. 一种基于曲率泊松碟采样的散乱点云精简方法[J]. 测绘通报,2020(增刊1):176-180.

    LI Qiqi,HUA Xianghong,ZHAO Bufan,et al. A method for scattered point cloud simplification based on curvature poisson dish sampling[J]. Bulletin of Surveying and Mapping,2020(S1):176-180.
    [11] 傅思勇,吴禄慎,陈华伟. 空间栅格动态划分的点云精简方法[J]. 光学学报,2017,37(11):253-261.

    FU Siyong,WU Lushen,CHEN Huawei. Point cloud simplification method based on space grid dynamic partitioning[J]. Acta Optica Sinica,2017,37(11):253-261.
    [12] 张匡宇,田庆. 一种基于曲率判别的点云去噪与精简算法[J]. 南方农机,2022,53(3):121-123. doi: 10.3969/j.issn.1672-3872.2022.03.036

    ZHANG Kuangyu,TIAN Qing. A point cloud denoising and simplification algorithm based on curvature discrimination[J]. China Southern Agricultural Machinery,2022,53(3):121-123. doi: 10.3969/j.issn.1672-3872.2022.03.036
    [13] 韩一菲,杨紫骞,郑福,等. 基于FPFH和法向量的改进点云配准算法[J]. 半导体光电,2021,42(4):579-584.

    HAN Yifei,YANG Ziqian,ZHENG Fu,et al. Improved point cloud registration algorithm based on FPFH and normal vector[J]. Semiconductor Optoelectronics,2021,42(4):579-584.
    [14] 李海鹏,徐丹,付宇婷,等. 基于FPFH特征提取的散乱点云精简算法[J]. 图学学报,2022,43(4):599-607.

    LI Haipeng,XU Dan,FU Yuting,et al. A scattered point cloud simplification algorithm based on FPFH feature extraction[J]. Journal of Graphics,2022,43(4):599-607.
    [15] 何宽,孙瑞,官云兰,等. 基于逐点前进法的点云数据精简[J]. 测绘通报,2022(9):167-169. doi: 10.3969/j.issn.0494-0911.2022.9.chtb202209031

    HE Kuan,SUN Rui,GUAN Yunlan,et al. Point cloud data simplification based on point-by-point advancing method[J]. Bulletin of Surveying and Mapping,2022(9):167-169. doi: 10.3969/j.issn.0494-0911.2022.9.chtb202209031
    [16] 李佩佩,崔凤英. 基于二分K−means聚类的曲率分级点云数据精简优化算法研究[J]. 电子测量技术,2022,45(4):66-71.

    LI Peipei,CUI Fengying. The optimization algorithm for curvature graded point cloud data based on dichotomous K-means clustering[J]. Electronic Measurement Technology,2022,45(4):66-71.
    [17] 章紫辉,官云兰. 基于邻域点位置特征的点云数据精简[J]. 激光与光电子学进展,2023,60(16):393-402.

    ZHANG Zihui,GUAN Yunlan. Point-cloud data reduction based on neighborhood-point position feature[J]. Laser & Optoelectronics Progress,2023,60(16):393-402.
    [18] 梁栋,蒲洁,李岩峰. 一种保留特征点的大数据量点云分类精简算法[J]. 测绘科学,2022,47(5):99-106,133.

    LIANG Dong,PU Jie,LI Yanfeng. A streamlined algorithm for large data point cloud classification with preserving feature points[J]. Science of Surveying and Mapping,2022,47(5):99-106,133.
    [19] 丁吉祥,董寰宇,秦训鹏. 面向结构件几何特征保留的点云精简方法[J]. 电子测量与仪器学报,2022,36(6):196-204.

    DING Jixiang,DONG Huanyu,QIN Xunpeng. Point cloud simplification method for geometric feature preservation of structural parts[J]. Journal of Electronic Measurement and Instrumentation,2022,36(6):196-204.
    [20] 刘江,张旭,朱继文. 一种基于K−D树优化的ICP三维点云配准方法[J]. 测绘工程,2016,25(6):15-18. doi: 10.3969/j.issn.1006-7949.2016.06.004

    LIU Jiang,ZHANG Xu,ZHU Jiwen. ICP three-dimensional point cloud registration method based on K-D tree optimization[J]. Engineering of Surveying and Mapping,2016,25(6):15-18. doi: 10.3969/j.issn.1006-7949.2016.06.004
    [21] 杨必胜,韩旭,董震. 点云深度学习基准数据集[J]. 遥感学报,2021,25(1):231-240. doi: 10.11834/jrs.20210542

    YANG Bisheng,HAN Xu,DONG Zhen. Point cloud benchmark dataset WHU-TLS and WHU-MLS for deep learning[J]. National Remote Sensing Bulletin,2021,25(1):231-240. doi: 10.11834/jrs.20210542
    [22] DONG Zhen,LIANG Fuxun,YANG Bisheng,et al. Registration of large-scale terrestrial laser scanner point clouds:a review and benchmark[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2020,163:327-342. doi: 10.1016/j.isprsjprs.2020.03.013
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  1088
  • HTML全文浏览量:  46
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-09
  • 修回日期:  2023-12-26
  • 网络出版日期:  2024-01-04

目录

    /

    返回文章
    返回