留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种矿用管道检测机器人设计及牵引性能分析

赵鹏洋 闫宏伟 张登崤 肖粲俊 何勃龙

赵鹏洋,闫宏伟,张登崤,等. 一种矿用管道检测机器人设计及牵引性能分析[J]. 工矿自动化,2024,50(1):122-130, 162.  doi: 10.13272/j.issn.1671-251x.2023040063
引用本文: 赵鹏洋,闫宏伟,张登崤,等. 一种矿用管道检测机器人设计及牵引性能分析[J]. 工矿自动化,2024,50(1):122-130, 162.  doi: 10.13272/j.issn.1671-251x.2023040063
ZHAO Pengyang, YAN Hongwei, ZHANG Dengxiao, et al. Mine pipeline inspection robot design and traction performance analysis[J]. Journal of Mine Automation,2024,50(1):122-130, 162.  doi: 10.13272/j.issn.1671-251x.2023040063
Citation: ZHAO Pengyang, YAN Hongwei, ZHANG Dengxiao, et al. Mine pipeline inspection robot design and traction performance analysis[J]. Journal of Mine Automation,2024,50(1):122-130, 162.  doi: 10.13272/j.issn.1671-251x.2023040063

一种矿用管道检测机器人设计及牵引性能分析

doi: 10.13272/j.issn.1671-251x.2023040063
基金项目: 山西省基础研究计划资助项目(20210302123038);山西省科技合作交流专项项目(202104041101001);中北大学科技立项项目(20221817)。
详细信息
    作者简介:

    赵鹏洋(1999—),男,山西大同人,硕士研究生,研究方向为矿用机器人设计,E-mail:1075145466@qq.com

    通讯作者:

    闫宏伟(1969—),男,山西太原人,教授,博士,研究方向为机械与机构的动态设计与优化,E-mail:aweigeyan@nuc.edu.cn

  • 中图分类号: TD67

Mine pipeline inspection robot design and traction performance analysis

  • 摘要: 针对瓦斯抽采管道破损泄漏检测问题,设计了一种具有管道检测和运动控制功能的螺旋式矿用管道检测机器人,介绍了该机器人的结构和检测与控制系统方案。建立了机器人在管道中运行的力学分析模型,并通过动力学仿真研究了影响机器人牵引性能的因素,结果表明:机器人在管道内运行时的牵引力与管道材质、螺旋角、管壁与驱动轮之间法向力有关;机器人在不同材质的管道中运行时最佳螺旋角不同,在相同材质的管道中运行时,无介质运输情况下牵引力高于有介质运输情况;机器人牵引力随法向力的增大而增大,但最佳螺旋角无明显变化;随着螺旋角增大,牵引力先增大后减小,螺旋角为40°时牵引力最大。为提高机器人通过弯管时的性能,提出一种变螺旋角过弯策略,即机器人主动控制螺旋角随螺旋运动单元转动以正弦式规律变化,使管道内侧的螺旋角小于外侧。搭建机器人测试平台对矿用管道检测机器人进行测试,结果表明:机器人在直管中运行的最佳螺旋角为40°;可通过增加法向力来提升机器人的牵引性能;采用变螺旋角过弯策略时,机器人在弯管中的通过性能和平稳性优于定螺旋角过弯。

     

  • 图  1  矿用管道检测机器人模型

    Figure  1.  Model of mine pipeline inspection robot

    图  2  螺旋运动单元结构

    Figure  2.  Structure of spiral motion unit

    图  3  电动机驱动单元与支撑单元结构

    Figure  3.  Structure of motor drive unit and support unit

    图  4  矿用管道机器人检测与控制系统组成

    Figure  4.  Composition of detection and control system of mine pipeline inspection robot

    图  5  管道检测机器人牵引力分析模型

    Figure  5.  Tractive force analysis model of mine pipeline inspection robot

    图  6  管道检测机器人牵引力与螺旋角和法向力的关系

    Figure  6.  The relationship between traction force, spiral angle and normal force of mine pipeline inspection robot

    图  7  管道检测机器人过弯牵引力分析模型

    Figure  7.  Traction force analysis model of mine pipeline inspection robot navigating curved pipes

    图  8  螺旋角变化规律

    Figure  8.  Variation of spiral angle

    图  9  管道检测机器人运行时的法向力分布

    Figure  9.  Normal force distribution during operation of mine pipeline inspection robot

    图  10  驱动因子与姿态角关系

    Figure  10.  Relationship between driving factor and attitude angle

    图  11  管道检测机器人仿真模型

    Figure  11.  Simulation model of mine pipeline inspection robot

    图  12  管道检测机器人在直管中不同工况下的牵引力仿真结果

    Figure  12.  Traction force simulation results of mine pipeline inspection robot in straight pipe under different working conditions

    图  13  管道检测机器人过弯时牵引力仿真结果

    Figure  13.  Simulation results of traction force during mine pipeline inspection robot bending

    图  14  不同法向力下管道检测机器人牵引力仿真结果

    Figure  14.  Traction force simulation results of mine pipeline inspection robot under different normal forces

    图  15  管道检测机器人牵引力测试平台

    Figure  15.  Test platform of traction force of mine pipeline inspection robot

    图  16  不同管道工况下机器人牵引力测试结果

    Figure  16.  Ttraction force test result of mine pipeline inspection robot under different pipe conditions

    图  17  不同法向力下机器人牵引力测试结果

    Figure  17.  Traction force test results of mine pipeline inspection robot under different normal forces

    表  1  矿用管道检测机器人主要技术参数

    Table  1.   Main technical parameters of mine pipeline inspection robot

    技术参数
    机器人长度/mm 480
    机器人质量/kg 8.5
    适应管径/mm 180~225
    最大速度/(m·min−1 3
    牵引力/N ≥30
    下载: 导出CSV

    表  2  驱动轮与管道接触参数

    Table  2.   Contact parameters of driving wheel and pipe

    工况 管道材质 有无运输介质 静摩擦因数 动摩擦因数
    钢(干) 0.30 0.25
    钢(湿) 0.08 0.05
    铝(干) 0.25 0.20
    铝(湿) 0.05 0.03
    下载: 导出CSV

    表  3  管道检测机器人过弯测试结果

    Table  3.   Test results of mine pipeline inspection robot bending

    螺旋角 20 rad/min 40 rad/min 60 rad/min 80 rad/min 100 rad/min
    变螺旋角
    10°
    20°
    30°
    40°
    50°
    60°
    70~90°
    下载: 导出CSV
  • [1] 蔡继涛,张志晶,王杰峰,等. 基于CFX的煤矿瓦斯抽采主系统管道泄漏数值模拟[J]. 矿业科学学报,2021,6(3):342-347.

    CAI Jitao,ZHANG Zhijing,WANG Jiefeng,et al. CFX-based numerical simulation of pipeline leakage of coal mine main gas drainage system[J]. Journal of Mining Science and Technology,2021,6(3):342-347.
    [2] 曹建树,林立,李杨,等. 油气管道机器人技术研发进展[J]. 油气储运,2013,32(1):1-7.

    CAO Jianshu,LIN Li,LI Yang,et al. Research and development progress in oil and gas pipeline robotics[J]. Oil & Gas Storage and Transportation,2013,32(1):1-7.
    [3] 魏明生,童敏明,张春亚,等. 管道清堵机器人电磁定位系统[J]. 工矿自动化,2016,42(6):1-4.

    WEI Mingsheng,TONG Minming,ZHANG Chunya,et al. Electromagnetic positioning system of pipeline blockage clearing robot[J]. Industry and Mine Automation,2016,42(6):1-4.
    [4] 赵林,王纪强,侯墨语. 煤矿管道泄漏监测系统设计[J]. 工矿自动化,2016,42(10):12-15.

    ZHAO Lin,WANG Jiqiang,HOU Moyu. Design of pipeline leakage monitoring system for coal mine[J]. Industry and Mine Automation,2016,42(10):12-15.
    [5] SHEN Yan,LI Yu,LI Zengping. Application of intelligent inspection robot in coal mine industrial heritage landscape:taking Wangshiwa Coal Mine as an example[J]. Frontiers in Neurorobotics,2022,16. DOI: 10.3389/FNBOT.2022.865146.
    [6] ZHAI Guodong,ZHANG Wentao,HU Wenyuan,et al. Coal mine rescue robots based on binocular vision:a review of the state of the art[J]. IEEE Access,2020,8. DOI: 10.1109/ACCESS.2020.3009387.
    [7] WANG Weidong,DONG Wei,SU Yanyu,et al. Development of search-and-rescue robots for underground coal mine applications[J]. Journal of Field Robotics,2014,31(3):386-407. doi: 10.1002/rob.21501
    [8] ZHAO Jingchao,GAO Junyao,ZHAO Fangzhou,et al. A search-and-rescue robot system for remotely sensing the underground coal mine environment [J]. Sensors,2017,17(10). DOI: 10.3390/s17102426.
    [9] 葛世荣,胡而已,裴文良. 煤矿机器人体系及关键技术[J]. 煤炭学报,2020,45(1):455-463.

    GE Shirong,HU Eryi,PEI Wenliang. Classification system and key technology of coal mine robot[J]. Journal of China Coal Society,2020,45(1):455-463.
    [10] KAZEMINASAB S,SADEGHI N,JANFAZA V,et al. Localization,mapping,navigation,and inspection methods in in-pipe robots:a review[J]. IEEE Access,2021,9. DOI: 10.1109/ACCESS.2021.3130233.
    [11] MIAO Xingyuan,ZHAO Hong,SONG Fulin,et al. Dynamic characteristics and motion control of pipeline robot under deformation excitation in subsea pipeline[J]. Ocean Engineering,2022,266. DOI: 10.1016/j.oceaneng.2022.112790.
    [12] ZHAO Wentao,ZHANG Liang,KIM J. Design and analysis of independently adjustable large in-pipe robot for long-distance pipeline[J]. Applied Sciences,2020,10(10). DOI: 10.3390/app10103637.
    [13] LEE D,PARK J,HYUN D,et al. Novel mechanisms and simple locomotion strategies for an in-pipe robot that can inspect various pipe types[J]. Mechanism and Machine Theory,2012,56:52-68. doi: 10.1016/j.mechmachtheory.2012.05.004
    [14] LILJEBACK P,PETTERSEN K Y,STAVDAHL O,et al. A review on modelling,implementation,and control of snake robots[J]. Robotics and Autonomous Systems,2012,60(1):29-40. doi: 10.1016/j.robot.2011.08.010
    [15] RASHID M Z A,YAKUB F,ZAKI S A,et al. Reconfigurable multi-legs robot for pipe inspection:design and gait movement[J]. Indian Journal of Geo-Marine Sciences,2019,48(7):1132-44.
    [16] GUZMAN B G,CORTES T M,LOPEZ A R,et al. Design of a communication,vision and sensory system for a rescuer robot in coal mine areas[C]. International Conference on Wireless Networks and Mobile Communications,Rabat,2017. DOI: 10.1109/WINCOM.2017.8238150.
    [17] LI Menggang,ZHU Hua,TANG Chaoquan,et al. Coal mine rescue robots:development,applications and lessons learned[C]. International Conference on Autonomous Unmanned Systems,Changsha,2021. DOI: 10.1007/978-981-16-9492-9_210.
    [18] ZHANG Lei,MENG Shan. Analysis of traveling-capability and obstacle-climbing capability for radially adjustable tracked pipeline robot[C]. IEEE International Conference on Robotics and Biomimetics,Qingdao,2016. DOI: 10.1109/ROBIO.2016.7866581.
    [19] PARK J,HYUN D,CHO W-H,et al. Normal-force control for an in-pipe robot according to the inclination of pipelines[J]. IEEE Transactions on Industrial Electrics, 2011,58(12):5304-5310.
    [20] YAN Hongwei,WANG Lu,LI Pengcheng,et al. Research on passing ability and climbing performance of pipeline plugging robots in curved pipelines[J]. IEEE Access,2020,8:173666-173680. doi: 10.1109/ACCESS.2020.3025560
    [21] YAN Hongwei,LI Jian,KOU Ziming,et al. Research on the traction and obstacle-surmounting performance of an adaptive pipeline-plugging robot[J]. Strojniski Vestnik/Journal of Mechanical Engineering,2022,68(1):14-26. doi: 10.5545/sv-jme.2021.7361
  • 加载中
图(17) / 表(3)
计量
  • 文章访问数:  460
  • HTML全文浏览量:  55
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-22
  • 修回日期:  2024-01-17
  • 网络出版日期:  2024-01-31

目录

    /

    返回文章
    返回