留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于数据驱动的综采工作面采运协同控制方法研究

皮国强 沈贵阳 常海军 张连东

皮国强,沈贵阳,常海军,等. 基于数据驱动的综采工作面采运协同控制方法研究[J]. 工矿自动化,2023,49(12):47-55.  doi: 10.13272/j.issn.1671-251x.2023040054
引用本文: 皮国强,沈贵阳,常海军,等. 基于数据驱动的综采工作面采运协同控制方法研究[J]. 工矿自动化,2023,49(12):47-55.  doi: 10.13272/j.issn.1671-251x.2023040054
PI Guoqiang, SHEN Guiyang, CHANG Haijun, et al. Research on data-driven collaborative control method for mining and transportation in fully mechanized mining face[J]. Journal of Mine Automation,2023,49(12):47-55.  doi: 10.13272/j.issn.1671-251x.2023040054
Citation: PI Guoqiang, SHEN Guiyang, CHANG Haijun, et al. Research on data-driven collaborative control method for mining and transportation in fully mechanized mining face[J]. Journal of Mine Automation,2023,49(12):47-55.  doi: 10.13272/j.issn.1671-251x.2023040054

基于数据驱动的综采工作面采运协同控制方法研究

doi: 10.13272/j.issn.1671-251x.2023040054
基金项目: 陕西省厅市联动重点项目(2022GD-TSLD-63,2022GD-TSLD-64)。
详细信息
    作者简介:

    皮国强(1969—),男,陕西黄陵人,工程师,研究方向为智能综采技术,E-mail:1274300490@qq.com

  • 中图分类号: TD528/634

Research on data-driven collaborative control method for mining and transportation in fully mechanized mining face

  • 摘要:

    目前针对采煤机与刮板输送机协同控制的研究初步建立了采运系统协同控制机制,但均未考虑非结构化综采工作面环境下,影响采运系统稳定运行因素的不确定性和耦合特性,以及煤流状态和刮板输送机负载电流受井下电气系统影响而无法真实反映刮板输送机负载变化的情况。针对上述问题,提出了一种基于刮板输送机负载电流强化和随机自注意力胶囊神经网络(RSACNN)的综采工作面采运协同控制方法。针对刮板输送机电动机电流的电气耦合特性,运用电流强化模型对原始刮板输送机电流进行预处理,得到能够反映煤流系统真实负载的电流分量。针对综采工作面采运系统运行状态参数与采煤机牵引速度存在着高度非线性和不确定性关系,难以建立精确数学模型的问题,基于胶囊神经网络(CNN)可保存综采工作面采运系统运行状态突变等细粒度特征的特性,建立了基于RSACNN的综采工作面采运协同控制模型。实验结果表明:RSACNN算法与自注意力胶囊神经网络(SACNN)算法、CNN算法的调速结果相比,预测的采煤机牵引速度精度更高,预测速度与真实速度的拟合度分别提高了0.032 05和0.075 04;平均绝对误差分别降低了17.7%,22.6%;平均绝对百分误差分别降低了49.9%,71.5%;均方根误差分别降低了13.3%,34.6%。

     

  • 图  1  基于电流强化的刮板输送机负载映射方法

    Figure  1.  Load mapping method of scraper conveyor based on current intensification

    图  2  综采工作面采运系统煤流监测点位

    Figure  2.  Coal flow monitoring points of fully mechanized mining face

    图  3  煤流监测装置

    Figure  3.  Coal flow monitoring device

    图  4  综采工作面采运协同控制模型

    Figure  4.  Collaborative control model of mining and transportation in fully mechanized mining face

    图  5  胶囊神经网络工作原理

    Figure  5.  The working principle of the capsule neural network

    图  6  胶囊神经网络动态路由算法流程

    Figure  6.  Dynamic routing algorithm process of capsule neural network

    图  7  RSACNN结构

    Figure  7.  Structure of random self-attention capsule neural network

    图  8  随机自注意力机制

    Figure  8.  Random self-attention mechanism

    图  9  改进前后的压缩函数曲线

    Figure  9.  The compression function curve before and after improvement

    图  10  原始电流信号频谱

    Figure  10.  Spectrum of original current signal

    图  11  抑制工频信号频谱

    Figure  11.  Spectrum of suppressed power frequency signal

    图  12  不同算法下采煤机牵引速度预测曲线

    Figure  12.  Shearer traction speed prediction curves under different algorithms

    图  13  采煤机牵引速度控制结果ROC曲线

    Figure  13.  Receiver operating characteristic curve of shearer traction speed control results

    图  14  3种算法控制结果决定系数

    Figure  14.  Determination coefficients of three algorithms control result

    表  1  综采工作面煤流系统运行状态参数

    Table  1.   Operation parameters of coal flow system in fully mechanized mining face

    被测对象 特征编码 特征名称 单位
    刮板输送机 l0 煤流量 m3
    l1 垂直电动机电流 A
    l2 垂直电动机转速 r/min
    l3 刮板输送机速度 m/min
    l4 机尾电动机电流 A
    l5 机尾电动机转速 r/min
    采煤机 l6 牵引变频器输出电流 A
    l7 采煤机牵引方向 左、右
    l8 采煤机实际速度 m/min
    l9 采煤机位置架
    l10 采煤机右截割电流 A
    l11 采煤机左截割电流 A
    下载: 导出CSV

    表  2  综采工作面煤流系统运行状态数据集

    Table  2.   Data set of coal flow system operating status in fully mechanized mining face

    样本
    序号
    状态参数 决策d
    刮板输送机 采煤机
    l0 l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11
    1 0.457 124 1197 0 110 1204 112.2 128 10.0 168 60.2 61.0 9.5
    2 0.459 127 1199 0 74 1203 115.1 32 9.5 162 73.8 60.3 8.3
    3 0.512 144 1200 1 79 1210 113.4 0 8.3 161 66.9 64.8 7.1
    4 0.491 126 1198 1 85 1207 116.2 32 7.1 159 70.7 76.5 6.1
    5 0.450 133 1197 0 87 1211 117.1 0 6.1 160 62.7 55.7 11.9
    5 001 0.450 133 1200 1 122 1200 80.6 64 11.9 10 63.0 47.7 12.1
    5 002 0.450 128 1197 1 89 1202 89.0 32 12.1 11 71.7 52.2 9.6
    5 003 0.463 129 1202 0 77 1199 92.0 256 9.6 13 72.3 53.3 9.5
    5 004 0.488 135 1200 0 80 1204 101.3 32 9.5 14 87.0 51.2 9.2
    5 005 0.471 131 1201 0 77 1212 94.3 128 9.2 16 67.4 56.8 0.8
    9 997 0.366 110 1198 1 106 1199 133.2 32 2.1 14 46.2 76.2 3.2
    9 998 0.481 101 1199 1 114 1200 125.7 0 3.2 10 49.8 85.1 0.6
    9 999 0.445 118 1198 1 116 1202 117.6 256 0.6 9 49.3 73.4 2.1
    10 000 0.401 114 1199 0 120 1198 116.5 4 2.1 8 57.6 90.9 3.7
    下载: 导出CSV

    表  3  不同算法预测结果比较

    Table  3.   Comparison of prediction results of different algorithms

    算法 平均绝对
    误差/(mm·min−1
    平均绝对百分
    误差/%
    均方根误差/
    (mm·min−1
    RSACNN 71.23 1.073 87.63
    SACNN 86.51 2.142 101.03
    CNN 92.03 3.771 134.01
    下载: 导出CSV
  • [1] 王国法,王虹,任怀伟,等. 智慧煤矿2025情景目标和发展路径[J]. 煤炭学报,2018,43(2):295-305.

    WANG Guofa,WANG Hong,REN Huaiwei,et al. 2025 scenarios and development path of intelligent coal mine[J]. Journal of China Coal Society,2018,43(2):295-305.
    [2] 王国法,张德生. 煤炭智能化综采技术创新实践与发展展望[J]. 中国矿业大学学报,2018,47(3):459-467.

    WANG Guofa,ZHANG Desheng. Innovation practice and development prospect of intelligent fully mechanized technology for coal mining[J]. Journal of China University of Mining & Technology,2018,47(3):459-467.
    [3] 王国法,刘峰,孟祥军,等. 煤矿智能化(初级阶段)研究与实践[J]. 煤炭科学技术,2019,47(8):1-36.

    WANG Guofa,LIU Feng,MENG Xiangjun,et al. Research and practice on intelligent coal mine construction(primary stage)[J]. Coal Science and Technology,2019,47(8):1-36.
    [4] 高有进,杨艺,常亚军,等. 综采工作面智能化关键技术现状与展望[J]. 煤炭科学技术,2021,49(8):1-22.

    GAO Youjin,YANG Yi,CHANG Yajun,et al. Status and prospect of key technologies of intelligentization of fully-mechanized coal mining face[J]. Coal Science and Technology,2021,49(8):1-22.
    [5] 王国法,徐亚军,张金虎,等. 煤矿智能化开采新进展[J]. 煤炭科学技术,2021,49(1):1-10.

    WANG Guofa,XU Yajun,ZHANG Jinhu,et al. New development of intelligent mining in coal mines[J]. Coal Science and Technology,2021,49(1):1-10.
    [6] 李首滨. 智能化开采研究进展与发展趋势[J]. 煤炭科学技术,2019,47(10):102-110.

    LI Shoubin. Progress and development trend of intelligent mining technology[J]. Coal Science and Technology,2019,47(10):102-110.
    [7] 原春斌. 基于多参数的刮板输送机调速研究[J]. 能源与节能,2019(9):103-104.

    YUAN Chunbin. Research on speed regulation of scraper conveyor based on multi- parameter[J]. Energy and Energy Conservation,2019(9):103-104.
    [8] 葛世荣. 煤矿智采工作面概念及系统架构研究[J]. 工矿自动化,2020,46(4):1-9.

    GE Shirong. Research on concept and system architecture of smart mining workface in coal mine[J]. Industry and Mine Automation,2020,46(4):1-9.
    [9] 陈迪蕾,郑征,黄涛,等. 基于采煤机和刮板输送机能耗模型的速度协同优化控制[J]. 煤炭学报,2022,47(6):2483-2498.

    CHEN Dilei,ZHENG Zheng,HUANG Tao,et al. Coordinated optimal control of the speed of shearer and scraper conveyor based on their energy consumption models[J]. Journal of China Coal Society,2022,47(6):2483-2498.
    [10] 湛玉婕. 改进BP神经网络的综采设备协同控制方法[J]. 煤炭技术,2022,41(10):207-209.

    ZHAN Yujie. Collaborative control method of fully mechanized mining equipment based on improved BP neural network[J]. Coal Technology,2022,41(10):207-209.
    [11] 樊占文,刘波. 基于改进Elman神经网络的综采装备协同控制研究[J]. 工矿自动化,2021,47(增刊2):26-28,38.

    FAN Zhanwen,LIU Bo. Research on cooperative control of fully mechanized mining equipment based on improved Elman neural network[J]. Industry and Mine Automation,2021,47(S2):26-28,38.
    [12] FAN Qigao,LI Wei,WANG Yuqiao,et al. Control strategy for an intelligent shearer height adjusting system[J]. Mining Science and Technology,2010,20(6):908-912.
    [13] 张文静. 基于PLC采煤机与刮板输送机联动控制技术研究[J]. 山东煤炭科技,2022,40(12):135-137.

    ZHANG Wenjing. Research on linkage control technology of shearer and scraper conveyor based on PLC[J]. Shandong Coal Science and Technology,2022,40(12):135-137.
    [14] 黄曾华,王峰,张守祥. 智能化采煤系统架构及关键技术研究[J]. 煤炭学报,2020,45(6):1959-1972.

    HUANG Zenghua,WANG Feng,ZHANG Shouxiang. Research on the architecture and key technologies of intelligent coal mining system[J]. Journal of China Coal Society,2020,45(6):1959-1972.
    [15] 王国法,刘峰,庞义辉,等. 煤矿智能化——煤炭工业高质量发展的核心技术支撑[J]. 煤炭学报,2019,44(2):349-357.

    WANG Guofa,LIU Feng,PANG Yihui,et al. Coal mine intellectualization:the core technology of high quality development[J]. Journal of China Coal Society,2019,44(2):349-357.
    [16] 路正雄,郭卫,张帆,等. 基于数据驱动的综采装备协同控制系统架构及关键技术[J]. 煤炭科学技术,2020,48(7):195-205.

    LU Zhengxiong,GUO Wei,ZHANG Fan,et al. Collaborative control system architecture and key technologies of fully-mechanized mining equipment based on data drive[J]. Coal Science and Technology,2020,48(7):195-205.
    [17] 张根,丁小辉,杨骥,等. 基于多尺度自适应胶囊网络的高光谱遥感分类[J]. 激光与光电子学进展,2022,59(24):263-272.

    ZHANG Gen,DING Xiaohui,YANG Ji,et al. Hyperspectral remote sensing classification using multi-scale adaptive capsule network[J]. Laser & Optoelectronics Progress,2022,59(24):263-272.
    [18] HINTON G E,KRIZHEVSKY A,WANG S D. Transforming auto-encoders[C]. 21th International Conference on Artifical Neural Networks,Espoo,2011:44-51.
    [19] 杨巨成,韩书杰,毛磊,等. 胶囊网络模型综述[J]. 山东大学学报(工学版),2019,49(6):1-10.

    YANG Jucheng,HAN Shujie,MAO Lei,et al. Review of capsule network[J]. Journal of Shandong University(Engineering Science),2019,49(6):1-10.
    [20] DHANABAL L,SHANTHARAJAH S P. A study on NSL-KDD dataset for intrusion detection system based on classification algorithms[J]. International Journal of Advanced Research in Computer and Communication Engineering,2015,4(6):446-452.
    [21] LU Zhengxiong,GUO Wei,ZHANG Chuanwei,et al. A novel intelligent decision-making method of shearer drum height regulating based on neighborhood rough reduction and selective ensemble learning[J]. IEEE Access,2020. DOI: 10.1109/ACCESS.2020.3048078.
    [22] LI Zhichao,LI Tian,YAN Xuefeng. A novel deep quality-supervised regularized autoencoder model for quality-relevant fault detection[J]. Science China Information Sciences,2022,65(5):276-278.
    [23] DU Yutao,ZHANG Ruiting,ZHANG Xiaowen,et al. Learning transferable and discriminative features for unsupervised domain adaptation[J]. Intelligent data analysis,2022,26(2):407-425. doi: 10.3233/IDA-215813
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  176
  • HTML全文浏览量:  86
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-20
  • 修回日期:  2023-12-01
  • 网络出版日期:  2023-12-18

目录

    /

    返回文章
    返回