Classification of safety zones for T-shaped roadway fire in deep coal mines
-
摘要:
矿井火灾中高温烟气的流动扩散是造成安全事故的重要原因,针对矿井典型巷道中火灾危险区域与时间关系不明确的问题,提出了一种深井“T”型巷道火灾的安全区域划分方法。采用 Pyrosim软件建立三维数值模型,模拟了在高温高湿情况下“T”型巷道火灾发展阶段巷道内的高温烟气流动,揭示了火灾发展阶段“T”型巷道下温度场和有害气体浓度场随时间和空间位置的变化规律;根据人体口鼻高度(即巷道1.6 m高度位置)的模拟数据,得出巷道的水平长度与温度、CO浓度、CO2 浓度的关系:风流通过巷道混合高温烟雾沿巷道顶部向下风侧蔓延,随着与火源距离增加,温度逐渐降低,CO、CO2浓度等值线纵向分布逐渐密集。在此基础上,根据烟气温度和CO、CO2 气体对人体的危害程度进行安全区域划分,将烟气扩散区域划分为安全区域(危险等级1)、轻度危险区域(危险等级2)、中度危险区域(危险等级3)、重度危险区域(危险等级4)4类,分析结果表明:温度划分结果中巷道Ⅰ中测点主要集中在重度危险区域,毒性气体划分结果中巷道ⅠCO2的安全区域范围较CO大,CO的危险因素更大,主要集中在轻度、中度危险区域,在巷道Ⅱ中测点主要集中在轻度危险区域;在巷道Ⅰ中危险等级1的范围随时间的推移逐渐变小,危险等级4的范围随时间的推移逐渐变大,且均在40 s时变化率最大,危险等级2、3变化率很小;在巷道Ⅱ中2种划分方法的区域范围变化相似,危险等级2、3均在60 s时变化率最大。
Abstract:The flow and diffusion of high-temperature smoke in mine fires is an important cause of safety accidents. In response to the unclear relationship between fire hazard zones and time in typical mine roadways, a safety zone classification method for T-shaped roadway fire in deep coal mines is proposed. A three-dimensional numerical model is established using Pyrosim software to simulate the high-temperature smoke flow in the T-shaped roadway during the fire development stage under high temperature and humidity conditions. The variation law of temperature field and CO, CO2 concentration field with time and spatial location in the T-shaped roadway during the fire development stage are revealed. Based on the simulated data of the height of the human mouth and nose (i.e. the height of 1.6 meters in the roadway), the relationship between the horizontal length of the roadway and temperature, CO concentration and CO2 concentration is obtained. The airflow mixes high-temperature smoke through the roadway and spreads downwards along the top of the roadway. As the distance from the fire source increases, the temprature gradually decreases, and the longitudinal distribution of CO and CO2 concentration contour lines becomes denser. On this basis, safety zones are classified based on the temperature of the smoke and the harm degree of CO and CO2 concentration to human health. The smoke diffusion area is divided into four categories: safety zone (hazard level 1), mild hazard zone (hazard level 2), moderate hazard zone (hazard level 3), and severe hazard zone (hazard level 4). The analysis results show that in the temperature classification results, the measurement points in roadwayⅠare mainly concentrated in the severe hazard zone. In the toxic gas classification results, the safety zone range of CO2 in roadway Ⅰ is larger than that of CO. The risk factors for CO are greater, mainly concentrated in mild and moderate hazard zones. In roadway Ⅱ, it is mainly concentrated in mild hazard zones. The range of hazard level 1 in roadway Ⅰ gradually decreases over time, while the range of hazard level 4 gradually increases over time, with the maximum change rate occurring at 40 seconds. The rates of change for hazard levels 2 and 3 are very small. The regional range changes of the two classification methods in roadway Ⅱ are similar, with the maximum change rate of hazard levels 2 and 3 occurring at 60 seconds.
-
表 1 巷道壁面岩石物理参数
Table 1. Rock physical parameters of the roadway wall
密度/(kg·m−3) 比热容/(kJ·kg−1·K−1) 导热系数/(W·m−1·K−1) 2620 0.84 2.2 表 2 柴油热物理参数
Table 2. Thermophysical parameters of diesel fuel
参数 值 密度/(kg·m−3) 851 沸点/℃ 281 比热容/(kJ·kg−1·K−1) 2.49 燃烧热/(kJ·kg−1) 42 553 蒸发热/(kJ·kg−1) 251 导热系数/(W·m−1·K−1) 0.133 表 3 不同温度对人体的影响
Table 3. The effect of different temperatures on the human body
温度/℃ 对人体的影响 20~28 感觉舒适 28~30 感觉到热且有点不舒服 30~34 人体汗腺工作,出汗较多,心跳加快 34~40 体表发热难忍,内热难消 40~90 吸入高温烟气,体内循环系统紊乱 90~120 吸入烟气会导致呼吸气管和支气管起泡 ˃120 皮肤灼伤,肌肉痉挛,窒息,容易死亡 表 4 CO对人体的影响
Table 4. Effects of CO on human body
CO体积分数/10−6 对人体的影响 ˂24 正常 50 人体允许暴露 200 2~3 h内会有轻度头痛 400 1~2 h内会出现头痛、恶心、头晕现象症状 800 45 min内剧烈头痛,呕吐;2 h导致昏迷 1 300 有强烈的头痛,1 h 生命垂危 5 000 20~30 min 内窒息死亡 表 5 CO2对人体的影响
Table 5. Effects of CO2 on human body
CO2体积分数/10−6 对人体的影响 450 正常 5000 6 h内不会产生任何症状 10 000~20 000 有不适感 30 000 刺激呼吸中枢,呼吸次数增加 40 000 呼吸急促,有头痛、心跳加快等症状 50 000 喘气困难 60 000 呼吸急促,感觉非常难受 表 6 矿井火灾高温危险性分级
Table 6. High temperature hazard classification of mine fire
危险等级 温度/℃ CO体积分数/10−6 CO2体积分数/10−6 1 ˂30 ˂ 24 ˂5 000 2 36~50 24~800 50 00~20 000 3 50~90 800~1 300 20 000~30 000 4 ˃90 ˃1 300 ˃30 000 表 7 烟气高温危险性划分结果
Table 7. Flue gas high temperature hazard classification results
时间/s 巷道 安全区域范围/m 轻度危险
区域范围/m中度危险
区域范围/m重度危险
区域范围/m20 Ⅰ (0,16)∪
(88,100)(16,20)∪
(72,88)(44,72) (20,44) Ⅱ (8,60) (0,8) — — 40 Ⅰ (0,12) (12,20) (64,100) (20,64) Ⅱ (32,60) (0,32) — — 60 Ⅰ (0,8) (8,20) (68,100) (20,68) Ⅱ (52,60) (0,52) — — 80 Ⅰ (0,8) (8,20) (72,100) (20,72) Ⅱ — (20,60) (0,20) — 100 Ⅰ (0,4) (4,20) (76,100) (20,76) Ⅱ — (40,60) (0,40) — 表 8 巷道Ⅰ烟气毒性危险性划分结果
Table 8. Risk classification results of flue gas toxicity of roadway I
时间/s 气体 安全区域范围/m 轻度危险区域范围/m 中度危险区域范围/m 重度危险区域范围/m 20 CO (0,21)∪(89,100) (21,21.8)∪(49.8,89) (40,49.8) (21.8,40) CO2 (0.5,2)∪(4,5.5)∪(13,60) (0,0.5)∪(2,4)∪(5.5,13) — — 40 CO (0,13.6)∪(16.6,21.3) (13.6,16.6)∪(21.3,21.6)∪(63,100) (21.6,22)∪(55.8,63) (22,55.8) CO2 (34.5,60) (0,34.5) — — 60 CO (0,10)∪(17.6,20.8) (10,17.6)∪(20.8,21.6)∪(67.6,100) (21.6,22)∪(65.8,67.6) (22,65.8) CO2 (55.5,60) (0,55.5) — — 80 CO (0,8.6) (8.6,21.6)∪(67.6,100) (66.3,67.6) (21.6,66.3) CO2 (59.5.60) (0,3)∪(14.5,59.5) (3,14.5) — 100 CO (0,4.8) (4.8,21.6)∪(72.3,100) (68,72.3) (21.6,68) CO2 (59.5.60) (0,2.5)∪(15,26.5)∪(36.5,59.5) (2.5,15)∪(26.5,36.5) — 表 9 巷道Ⅱ烟气毒性的危险性划分结果
Table 9. Risk classification results of flue gas toxicity of roadway Ⅱ
时间/s 气体 安全区域范围/m 轻度危险区域范围/m 中度危险区域范围/m 重度危险区域范围/m 20 CO (0.5,2)∪(4,5.5)∪(13,60) (0,0.5)∪(2,4)∪(5.5,13) — — 40 CO (34.5,60) (0,34.5) — — 60 CO (55.5,60) (0,55.5) — — 80 CO (59.5.60) (0,3)∪(10,59.5) (3,10) — 100 CO (59.5.60) (0,2.5)∪(15,26.5)∪(36.5,59.5) (2.5,15)∪(26.5,36.5) — 表 10 烟气毒性危险性划分结果
Table 10. Results of flue gas toxicity risk classification
时间/s 巷道 安全区域范围/m 轻度危险区域范围/m 中度危险区域范围/m 重度危险区域范围/m 20 Ⅰ (0,21)∪(89,100) (21,21.8)∪(49.8,89) (40,49.8) (21.8,40) Ⅱ (0.5,2)∪(4,5.5)∪(13,60) (0,0.5)∪(2,4)∪(5.5,13) — — 40 Ⅰ (0,13.6)∪(16.6,21.3) (13.6,16.6)∪(21.3,21.6)∪(63,100) (21.6,22)∪(55.8,63) (22,55.8) Ⅱ (34.5,60) (0,34.5) — — 60 Ⅰ (0,10)∪(17.6,20.8) (10,17.6)∪(20.8,21.6)∪(67.6,100) (21.6,22)∪(65.8,67.6) (22,65.8) Ⅱ (55.5,60) (0,55.5) — — 80 Ⅰ (0,8.6) (8.6,21.6)∪(67.6,100) (66.3,67.6) (21.6,66.3) Ⅱ (59.5.60) (0,3)∪(10,59.5) (3,10) — 100 Ⅰ (0,4.8) (4.8,21.6)∪(72.3,100) (68,72.3) (21.6,68) Ⅱ (59.5.60) (0,2.5)∪(15,26.5)∪(36.5,59.5) (2.5,15)∪(26.5,36.5) — -
[1] CHUAN Gangfan,XU Yanli,YAN Mu,et al. Smoke movement characteristics under stack effect in a mine laneway fire[J]. Applied Thermal Engineering,2017,110:70-79. doi: 10.1016/j.applthermaleng.2016.08.120 [2] SHI Xueqiang,ZHANG Yutao,CHEN Xiaokun,et al. Effects of thermal boundary conditions on spontaneous combustion of coal under temperature-programmed conditions[J]. Fuel,2021,295(15). DOI: 10.1016/j.fuel.2021.120591. [3] LIU Yin,WEN Hu,GUO Jun,et al. Coal spontaneous combustion and N2 suppression in triple goafs:a numerical simulation and experimental study[J]. Fuel,2020,271. DOI: 10.1016/j.fuel.2020.117625. [4] GUO Jun,WEN Hu,ZHENG Xuezhao,et al. A method for evaluating the spontaneous combustion of coal by monitoring various gases[J]. Process Safety and Environmental Protection,2019,126:223-231. doi: 10.1016/j.psep.2019.04.014 [5] CHOW WK,GAO Y,ZOU JF,et al. Numerical studies on thermally-induced air flow in sloping tunnels with experimental scale modelling justifications[J]. Fire Technology,2018,54(4):867-892. doi: 10.1007/s10694-018-0713-3 [6] GUO Jun,LIU Yin,CHENG Xiaojiao,et al. A novel prediction model for the degree of rescue safety in mine thermal dynamic disasters based on fuzzy analytical hierarchy process and extreme learning machine[J]. International Journal of Heat and Technology,2018,36(4):1336-1342. doi: 10.18280/ijht.360424 [7] WEN Hu,LIU Yin,GUO Jun,et al. A multi-index-classified early warning method for spontaneous combustion of coal under air leakage blocking[J]. International Journal of Oil,Gas and Coal Technology,2021,27(2):208-226. doi: 10.1504/IJOGCT.2021.115547 [8] 薛彦平. 巷道分岔角度对火灾烟气蔓延的影响数值模拟[J]. 煤矿安全,2020,51(6):179-183. doi: 10.13347/j.cnki.mkaq.2020.06.039XUE Yanping. Numerical simulation of effect of tunnel diverging angles on fire smoke flow[J]. Safety in Coal Mines,2020,51(6):179-183. doi: 10.13347/j.cnki.mkaq.2020.06.039 [9] ZHAO Shengzhong,LIU Fang,WAGN Jun,et al. Experimental investigation on fire smoke bifurcation flow in longitudinal ventilated tunnels[J]. Fire and Materials,2020,44(5). DOI: 10.1002/fam.2828. [10] HUANG Youbo,LI Yanfeng,LI Junmei,et al. Experimental investigation on maximum gas temperature beneath the ceiling in a branched tunnel fire[J]. International Journal of Thermal Sciences,2019,145. DOI: 10.1016/j.ijthermalsci.2019.105997. [11] 索在斌. 工作面进风巷下行风流火灾数值模拟及风流控制研究[D]. 太原:太原理工大学,2019.SUO Zaibin. Numerical simulation and airflow control of downstream flow fire in working face[D]. Taiyuan:Taiyuan University of Technology,2019. [12] 王建国,武睿萌,殷雄,等. 综采工作面进风巷火灾数值模拟研究[J]. 矿业安全与环保,2019,46(5):7-11,15. doi: 10.3969/j.issn.1008-4495.2019.05.002WANG Jianguo,WU Ruimeng,YIN Xiong,et al. Numerical simulation of fire in intake airway in fully mechanized working face[J]. Mining Safety & Environmental Protection,2019,46(5):7-11,15. doi: 10.3969/j.issn.1008-4495.2019.05.002 [13] 李祥春,蒋颖,李梅生. 巷道火灾时期流场及瓦斯浓度变化规律数值模拟研究[J]. 煤炭科学技术,2019,47(5):119-125. doi: 10.13199/j.cnki.cst.2019.05.019LI Xiangchun,JIANG Ying,LI Meisheng. Study on numerical simulation of variations of airflow field and gas concentration during roadway fire[J]. Coal Science and Technology,2019,47(5):119-125. doi: 10.13199/j.cnki.cst.2019.05.019 [14] 索在斌,吴世跃,牛煜,等. 坡度对上行通风火灾影响的数值模拟[J]. 煤矿安全,2019,50(1):192-195,199. doi: 10.13347/j.cnki.mkaq.2019.01.047SUO Zaibin,WU Shiyue,NIU Yu,et al. Numerical simulation of the influence of slope on upward ventilation fire[J]. Safety in Coal Mines,2019,50(1):192-195,199. doi: 10.13347/j.cnki.mkaq.2019.01.047 [15] 沈云鸽,王德明. 基于FDS的矿井巷道火灾烟气致灾的数值模拟[J]. 煤矿安全,2020,51(2):183-187. doi: 10.13347/j.cnki.mkaq.2020.02.001SHEN Yunge,WANG Deming. Numerical simulation of smoke disaster caused by mine roadway fire based on FDS[J]. Safety in Coal Mines,2020,51(2):183-187. doi: 10.13347/j.cnki.mkaq.2020.02.001 [16] 陈亮,邬长福,陈祖云,等. 矿井巷道火灾安全区域划分数值模拟[J]. 消防科学与技术,2016,35(5):633-636. doi: 10.3969/j.issn.1009-0029.2016.05.013CHEN Liang,WU Changfu,CHEN Zuyun,et al. Numerical simulation study on the regional division of mine roadways fire safety[J]. Fire Science and Technology,2016,35(5):633-636. doi: 10.3969/j.issn.1009-0029.2016.05.013 [17] 刘蓓蓓. 金属矿井下火灾热释放速率及烟气逆流行为研究[D]. 青岛:山东科技大学,2018.LIU Beibei. The research of heat release rate and backlayering in the fire under the metal mine[D]. Qingdao:Shandong University of Science and Technolog,2018. [18] 张泽. 矿井胶带火灾烟气流动模拟及危险区域划分[D]. 西安:西安科技大学,2017.ZHANG Ze. Simulation and division of danger areas of smoke flow of belt fire in coal mine[D]. Xi'an:Xi'an University of Science and Technology,2017. [19] 邓权龙. 矿井巷道火灾烟流数值模拟及安全区域划分[D]. 赣州:江西理工大学,2015.DENG Quanlong. The numerical simulation of the smoke flow during fire and the safety zone divide in mine roadways[D]. Ganzhou:Jiangxi University of Science and Technology,2015. [20] WEN Hu,LIU Yin,GUO Jun,et al. Study on numerical simulation of fire danger area division in mine roadway[J]. Mathematical Problems in Engineering,2021. DOI: 10.1155/2021/6646632.