留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

深井“T”型巷道火灾的安全区域划分

周亚博 吴斌杰 柏杨 姚奇 张永亮 牟宏伟

周亚博,吴斌杰,柏杨,等. 深井“T”型巷道火灾的安全区域划分[J]. 工矿自动化,2023,49(12):130-138.  doi: 10.13272/j.issn.1671-251x.2023040024
引用本文: 周亚博,吴斌杰,柏杨,等. 深井“T”型巷道火灾的安全区域划分[J]. 工矿自动化,2023,49(12):130-138.  doi: 10.13272/j.issn.1671-251x.2023040024
ZHOU Yabo, WU Binjie, BAI Yang, et al. Classification of safety zones for T-shaped roadway fire in deep coal mines[J]. Journal of Mine Automation,2023,49(12):130-138.  doi: 10.13272/j.issn.1671-251x.2023040024
Citation: ZHOU Yabo, WU Binjie, BAI Yang, et al. Classification of safety zones for T-shaped roadway fire in deep coal mines[J]. Journal of Mine Automation,2023,49(12):130-138.  doi: 10.13272/j.issn.1671-251x.2023040024

深井“T”型巷道火灾的安全区域划分

doi: 10.13272/j.issn.1671-251x.2023040024
基金项目: 国家自然科学基金项目(52374209);山东省自然科学基金项目(ZR2023ME012);山东省高等学校优秀青年创新团队项目(2019KJH008)。
详细信息
    作者简介:

    周亚博(1986—),男,河南郑州人,工程师,硕士,主要从事矿山安全开采方面的研究和管理工作,E-mail:zhouyb@sd-gold.com

    通讯作者:

    张永亮(1979—),男,教授,博士,博士研究生导师,主要从事矿山安全开采方面的研究工作,E-mail: zhyoliang@163.com

  • 中图分类号: TD752

Classification of safety zones for T-shaped roadway fire in deep coal mines

  • 摘要:

    矿井火灾中高温烟气的流动扩散是造成安全事故的重要原因,针对矿井典型巷道中火灾危险区域与时间关系不明确的问题,提出了一种深井“T”型巷道火灾的安全区域划分方法。采用 Pyrosim软件建立三维数值模型,模拟了在高温高湿情况下“T”型巷道火灾发展阶段巷道内的高温烟气流动,揭示了火灾发展阶段“T”型巷道下温度场和有害气体浓度场随时间和空间位置的变化规律;根据人体口鼻高度(即巷道1.6 m高度位置)的模拟数据,得出巷道的水平长度与温度、CO浓度、CO2 浓度的关系:风流通过巷道混合高温烟雾沿巷道顶部向下风侧蔓延,随着与火源距离增加,温度逐渐降低,CO、CO2浓度等值线纵向分布逐渐密集。在此基础上,根据烟气温度和CO、CO2 气体对人体的危害程度进行安全区域划分,将烟气扩散区域划分为安全区域(危险等级1)、轻度危险区域(危险等级2)、中度危险区域(危险等级3)、重度危险区域(危险等级4)4类,分析结果表明:温度划分结果中巷道Ⅰ中测点主要集中在重度危险区域,毒性气体划分结果中巷道ⅠCO2的安全区域范围较CO大,CO的危险因素更大,主要集中在轻度、中度危险区域,在巷道Ⅱ中测点主要集中在轻度危险区域;在巷道Ⅰ中危险等级1的范围随时间的推移逐渐变小,危险等级4的范围随时间的推移逐渐变大,且均在40 s时变化率最大,危险等级2、3变化率很小;在巷道Ⅱ中2种划分方法的区域范围变化相似,危险等级2、3均在60 s时变化率最大。

     

  • 图  1  巷道模型

    Figure  1.  Roadway model

    图  2  不同网格尺寸下的火灾热释放速率曲线

    Figure  2.  Heat release rate curves of fires with different grid sizes

    图  3  不同时间点沿巷道垂直截面的温度云图

    Figure  3.  Temperature distribution along the vertical section of roadway at each time point

    图  4  不同时间点CO和CO2体积分数沿巷道Ⅰ垂直截面的等值线

    Figure  4.  Contour maps of CO and CO2 volume fration at different time points along the vertical section of roadwayⅠ

    图  5  不同时间点CO和CO2体积分数沿巷道Ⅱ垂直截面的等值线

    Figure  5.  Contour maps of CO and CO2 volume fraction at different time points along the vertical section of roadwayⅡ

    图  6  温度随巷道水平长度变化

    Figure  6.  Temperature variation with horizontal length of the roadway

    图  7  巷道中CO和CO2体积分数变化

    Figure  7.  Variation of CO and CO2 volume fraction in the roadway

    图  8  危险区域范围随时间的变化

    Figure  8.  Changes in the range of the hazardous zones with time

    图  9  危险区域总范围随时间的变化规律

    Figure  9.  The law of changes in the total range of the hazard zones with time

    表  1  巷道壁面岩石物理参数

    Table  1.   Rock physical parameters of the roadway wall

    密度/(kg·m−3 比热容/(kJ·kg−1·K−1 导热系数/(W·m−1·K−1
    2620 0.84 2.2
    下载: 导出CSV

    表  2  柴油热物理参数

    Table  2.   Thermophysical parameters of diesel fuel

    参数
    密度/(kg·m−3 851
    沸点/℃ 281
    比热容/(kJ·kg−1·K−1 2.49
    燃烧热/(kJ·kg−1 42 553
    蒸发热/(kJ·kg−1 251
    导热系数/(W·m−1·K−1 0.133
    下载: 导出CSV

    表  3  不同温度对人体的影响

    Table  3.   The effect of different temperatures on the human body

    温度/℃对人体的影响
    20~28感觉舒适
    28~30感觉到热且有点不舒服
    30~34人体汗腺工作,出汗较多,心跳加快
    34~40体表发热难忍,内热难消
    40~90吸入高温烟气,体内循环系统紊乱
    90~120吸入烟气会导致呼吸气管和支气管起泡
    ˃120皮肤灼伤,肌肉痉挛,窒息,容易死亡
    下载: 导出CSV

    表  4  CO对人体的影响

    Table  4.   Effects of CO on human body

    CO体积分数/10−6对人体的影响
    ˂24正常
    50人体允许暴露
    2002~3 h内会有轻度头痛
    4001~2 h内会出现头痛、恶心、头晕现象症状
    80045 min内剧烈头痛,呕吐;2 h导致昏迷
    1 300有强烈的头痛,1 h 生命垂危
    5 00020~30 min 内窒息死亡
    下载: 导出CSV

    表  5  CO2对人体的影响

    Table  5.   Effects of CO2 on human body

    CO2体积分数/10−6对人体的影响
    450正常
    50006 h内不会产生任何症状
    10 000~20 000有不适感
    30 000刺激呼吸中枢,呼吸次数增加
    40 000呼吸急促,有头痛、心跳加快等症状
    50 000喘气困难
    60 000呼吸急促,感觉非常难受
    下载: 导出CSV

    表  6  矿井火灾高温危险性分级

    Table  6.   High temperature hazard classification of mine fire

    危险等级 温度/℃ CO体积分数/10−6 CO2体积分数/10−6
    1 ˂30 ˂ 24 ˂5 000
    2 36~50 24~800 50 00~20 000
    3 50~90 800~1 300 20 000~30 000
    4 ˃90 ˃1 300 ˃30 000
    下载: 导出CSV

    表  7  烟气高温危险性划分结果

    Table  7.   Flue gas high temperature hazard classification results

    时间/s 巷道 安全区域范围/m 轻度危险
    区域范围/m
    中度危险
    区域范围/m
    重度危险
    区域范围/m
    20 (0,16)∪
    (88,100)
    (16,20)∪
    (72,88)
    (44,72) (20,44)
    (8,60) (0,8)
    40 (0,12) (12,20) (64,100) (20,64)
    (32,60) (0,32)
    60 (0,8) (8,20) (68,100) (20,68)
    (52,60) (0,52)
    80 (0,8) (8,20) (72,100) (20,72)
    (20,60) (0,20)
    100 (0,4) (4,20) (76,100) (20,76)
    (40,60) (0,40)
    下载: 导出CSV

    表  8  巷道Ⅰ烟气毒性危险性划分结果

    Table  8.   Risk classification results of flue gas toxicity of roadway I

    时间/s 气体 安全区域范围/m 轻度危险区域范围/m 中度危险区域范围/m 重度危险区域范围/m
    20 CO (0,21)∪(89,100) (21,21.8)∪(49.8,89) (40,49.8) (21.8,40)
    CO2 (0.5,2)∪(4,5.5)∪(13,60) (0,0.5)∪(2,4)∪(5.5,13)
    40 CO (0,13.6)∪(16.6,21.3) (13.6,16.6)∪(21.3,21.6)∪(63,100) (21.6,22)∪(55.8,63) (22,55.8)
    CO2 (34.5,60) (0,34.5)
    60 CO (0,10)∪(17.6,20.8) (10,17.6)∪(20.8,21.6)∪(67.6,100) (21.6,22)∪(65.8,67.6) (22,65.8)
    CO2 (55.5,60) (0,55.5)
    80 CO (0,8.6) (8.6,21.6)∪(67.6,100) (66.3,67.6) (21.6,66.3)
    CO2 (59.5.60) (0,3)∪(14.5,59.5) (3,14.5)
    100 CO (0,4.8) (4.8,21.6)∪(72.3,100) (68,72.3) (21.6,68)
    CO2 (59.5.60) (0,2.5)∪(15,26.5)∪(36.5,59.5) (2.5,15)∪(26.5,36.5)
    下载: 导出CSV

    表  9  巷道Ⅱ烟气毒性的危险性划分结果

    Table  9.   Risk classification results of flue gas toxicity of roadway Ⅱ

    时间/s 气体 安全区域范围/m 轻度危险区域范围/m 中度危险区域范围/m 重度危险区域范围/m
    20 CO (0.5,2)∪(4,5.5)∪(13,60) (0,0.5)∪(2,4)∪(5.5,13)
    40 CO (34.5,60) (0,34.5)
    60 CO (55.5,60) (0,55.5)
    80 CO (59.5.60) (0,3)∪(10,59.5) (3,10)
    100 CO (59.5.60) (0,2.5)∪(15,26.5)∪(36.5,59.5) (2.5,15)∪(26.5,36.5)
    下载: 导出CSV

    表  10  烟气毒性危险性划分结果

    Table  10.   Results of flue gas toxicity risk classification

    时间/s 巷道 安全区域范围/m 轻度危险区域范围/m 中度危险区域范围/m 重度危险区域范围/m
    20 (0,21)∪(89,100) (21,21.8)∪(49.8,89) (40,49.8) (21.8,40)
    (0.5,2)∪(4,5.5)∪(13,60) (0,0.5)∪(2,4)∪(5.5,13)
    40 (0,13.6)∪(16.6,21.3) (13.6,16.6)∪(21.3,21.6)∪(63,100) (21.6,22)∪(55.8,63) (22,55.8)
    (34.5,60) (0,34.5)
    60 (0,10)∪(17.6,20.8) (10,17.6)∪(20.8,21.6)∪(67.6,100) (21.6,22)∪(65.8,67.6) (22,65.8)
    (55.5,60) (0,55.5)
    80 (0,8.6) (8.6,21.6)∪(67.6,100) (66.3,67.6) (21.6,66.3)
    (59.5.60) (0,3)∪(10,59.5) (3,10)
    100 (0,4.8) (4.8,21.6)∪(72.3,100) (68,72.3) (21.6,68)
    (59.5.60) (0,2.5)∪(15,26.5)∪(36.5,59.5) (2.5,15)∪(26.5,36.5)
    下载: 导出CSV
  • [1] CHUAN Gangfan,XU Yanli,YAN Mu,et al. Smoke movement characteristics under stack effect in a mine laneway fire[J]. Applied Thermal Engineering,2017,110:70-79. doi: 10.1016/j.applthermaleng.2016.08.120
    [2] SHI Xueqiang,ZHANG Yutao,CHEN Xiaokun,et al. Effects of thermal boundary conditions on spontaneous combustion of coal under temperature-programmed conditions[J]. Fuel,2021,295(15). DOI: 10.1016/j.fuel.2021.120591.
    [3] LIU Yin,WEN Hu,GUO Jun,et al. Coal spontaneous combustion and N2 suppression in triple goafs:a numerical simulation and experimental study[J]. Fuel,2020,271. DOI: 10.1016/j.fuel.2020.117625.
    [4] GUO Jun,WEN Hu,ZHENG Xuezhao,et al. A method for evaluating the spontaneous combustion of coal by monitoring various gases[J]. Process Safety and Environmental Protection,2019,126:223-231. doi: 10.1016/j.psep.2019.04.014
    [5] CHOW WK,GAO Y,ZOU JF,et al. Numerical studies on thermally-induced air flow in sloping tunnels with experimental scale modelling justifications[J]. Fire Technology,2018,54(4):867-892. doi: 10.1007/s10694-018-0713-3
    [6] GUO Jun,LIU Yin,CHENG Xiaojiao,et al. A novel prediction model for the degree of rescue safety in mine thermal dynamic disasters based on fuzzy analytical hierarchy process and extreme learning machine[J]. International Journal of Heat and Technology,2018,36(4):1336-1342. doi: 10.18280/ijht.360424
    [7] WEN Hu,LIU Yin,GUO Jun,et al. A multi-index-classified early warning method for spontaneous combustion of coal under air leakage blocking[J]. International Journal of Oil,Gas and Coal Technology,2021,27(2):208-226. doi: 10.1504/IJOGCT.2021.115547
    [8] 薛彦平. 巷道分岔角度对火灾烟气蔓延的影响数值模拟[J]. 煤矿安全,2020,51(6):179-183. doi: 10.13347/j.cnki.mkaq.2020.06.039

    XUE Yanping. Numerical simulation of effect of tunnel diverging angles on fire smoke flow[J]. Safety in Coal Mines,2020,51(6):179-183. doi: 10.13347/j.cnki.mkaq.2020.06.039
    [9] ZHAO Shengzhong,LIU Fang,WAGN Jun,et al. Experimental investigation on fire smoke bifurcation flow in longitudinal ventilated tunnels[J]. Fire and Materials,2020,44(5). DOI: 10.1002/fam.2828.
    [10] HUANG Youbo,LI Yanfeng,LI Junmei,et al. Experimental investigation on maximum gas temperature beneath the ceiling in a branched tunnel fire[J]. International Journal of Thermal Sciences,2019,145. DOI: 10.1016/j.ijthermalsci.2019.105997.
    [11] 索在斌. 工作面进风巷下行风流火灾数值模拟及风流控制研究[D]. 太原:太原理工大学,2019.

    SUO Zaibin. Numerical simulation and airflow control of downstream flow fire in working face[D]. Taiyuan:Taiyuan University of Technology,2019.
    [12] 王建国,武睿萌,殷雄,等. 综采工作面进风巷火灾数值模拟研究[J]. 矿业安全与环保,2019,46(5):7-11,15. doi: 10.3969/j.issn.1008-4495.2019.05.002

    WANG Jianguo,WU Ruimeng,YIN Xiong,et al. Numerical simulation of fire in intake airway in fully mechanized working face[J]. Mining Safety & Environmental Protection,2019,46(5):7-11,15. doi: 10.3969/j.issn.1008-4495.2019.05.002
    [13] 李祥春,蒋颖,李梅生. 巷道火灾时期流场及瓦斯浓度变化规律数值模拟研究[J]. 煤炭科学技术,2019,47(5):119-125. doi: 10.13199/j.cnki.cst.2019.05.019

    LI Xiangchun,JIANG Ying,LI Meisheng. Study on numerical simulation of variations of airflow field and gas concentration during roadway fire[J]. Coal Science and Technology,2019,47(5):119-125. doi: 10.13199/j.cnki.cst.2019.05.019
    [14] 索在斌,吴世跃,牛煜,等. 坡度对上行通风火灾影响的数值模拟[J]. 煤矿安全,2019,50(1):192-195,199. doi: 10.13347/j.cnki.mkaq.2019.01.047

    SUO Zaibin,WU Shiyue,NIU Yu,et al. Numerical simulation of the influence of slope on upward ventilation fire[J]. Safety in Coal Mines,2019,50(1):192-195,199. doi: 10.13347/j.cnki.mkaq.2019.01.047
    [15] 沈云鸽,王德明. 基于FDS的矿井巷道火灾烟气致灾的数值模拟[J]. 煤矿安全,2020,51(2):183-187. doi: 10.13347/j.cnki.mkaq.2020.02.001

    SHEN Yunge,WANG Deming. Numerical simulation of smoke disaster caused by mine roadway fire based on FDS[J]. Safety in Coal Mines,2020,51(2):183-187. doi: 10.13347/j.cnki.mkaq.2020.02.001
    [16] 陈亮,邬长福,陈祖云,等. 矿井巷道火灾安全区域划分数值模拟[J]. 消防科学与技术,2016,35(5):633-636. doi: 10.3969/j.issn.1009-0029.2016.05.013

    CHEN Liang,WU Changfu,CHEN Zuyun,et al. Numerical simulation study on the regional division of mine roadways fire safety[J]. Fire Science and Technology,2016,35(5):633-636. doi: 10.3969/j.issn.1009-0029.2016.05.013
    [17] 刘蓓蓓. 金属矿井下火灾热释放速率及烟气逆流行为研究[D]. 青岛:山东科技大学,2018.

    LIU Beibei. The research of heat release rate and backlayering in the fire under the metal mine[D]. Qingdao:Shandong University of Science and Technolog,2018.
    [18] 张泽. 矿井胶带火灾烟气流动模拟及危险区域划分[D]. 西安:西安科技大学,2017.

    ZHANG Ze. Simulation and division of danger areas of smoke flow of belt fire in coal mine[D]. Xi'an:Xi'an University of Science and Technology,2017.
    [19] 邓权龙. 矿井巷道火灾烟流数值模拟及安全区域划分[D]. 赣州:江西理工大学,2015.

    DENG Quanlong. The numerical simulation of the smoke flow during fire and the safety zone divide in mine roadways[D]. Ganzhou:Jiangxi University of Science and Technology,2015.
    [20] WEN Hu,LIU Yin,GUO Jun,et al. Study on numerical simulation of fire danger area division in mine roadway[J]. Mathematical Problems in Engineering,2021. DOI: 10.1155/2021/6646632.
  • 加载中
图(9) / 表(10)
计量
  • 文章访问数:  101
  • HTML全文浏览量:  48
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-09
  • 修回日期:  2023-12-03
  • 网络出版日期:  2023-12-18

目录

    /

    返回文章
    返回