留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

矿井提升机健康状态评估与预测系统研究

王琛 杨岸

王琛,杨岸. 矿井提升机健康状态评估与预测系统研究[J]. 工矿自动化,2023,49(10):75-86.  doi: 10.13272/j.issn.1671-251x.2023030092
引用本文: 王琛,杨岸. 矿井提升机健康状态评估与预测系统研究[J]. 工矿自动化,2023,49(10):75-86.  doi: 10.13272/j.issn.1671-251x.2023030092
WANG Chen, YANG An. Research on the health evaluation and prediction system for mine hoists[J]. Journal of Mine Automation,2023,49(10):75-86.  doi: 10.13272/j.issn.1671-251x.2023030092
Citation: WANG Chen, YANG An. Research on the health evaluation and prediction system for mine hoists[J]. Journal of Mine Automation,2023,49(10):75-86.  doi: 10.13272/j.issn.1671-251x.2023030092

矿井提升机健康状态评估与预测系统研究

doi: 10.13272/j.issn.1671-251x.2023030092
详细信息
    作者简介:

    王琛(1999—),男,安徽宿州人,硕士研究生,主要研究方向为矿山电力系统自动化,E-mail:35045472@qq.com

    通讯作者:

    杨岸(1965—),男,安徽寿县人,副教授,硕士,主要研究方向为矿山电力系统自动化,E-mail:1084538989@qq.com

  • 中图分类号: TD633

Research on the health evaluation and prediction system for mine hoists

  • 摘要: 针对目前对矿井提升机整个系统进行健康状态评估与预测的相关研究相对较少的问题,建立了矿井提升机健康状态评估指标体系和评语集,设计了矿井提升机健康状态评估与预测系统。针对矿井提升机各组成系统的监测数据无法充分利用、健康状态评估结果不能满足实际生产需求的问题,提出了一种提升机健康状态模糊综合评估方法:引入相对劣化度表征提升机不同类型指标的健康度,并利用健康度对矿井提升机的健康状态进行量化;采用模糊综合评估法计算矿井提升机的健康状态,使用指数标度代替1—9标度对层次分析法(AHP)进行改进,以降低计算复杂度;采用CRITIC客观赋权法,结合主客观权重计算各子系统和指标的综合权重;根据模糊综合评估计算过程和最大隶属原则,得到矿井提升机的健康状态评估结果和故障原因。在提升机健康状态评估结果基础上,利用哈里斯鹰优化(HHO)算法优化支持向量回归(SVR)模型的重要参数,构建HHO−SVR模型对矿井提升机的健康状态进行预测,提高健康预测结果的准确性。实验结果表明:模糊综合评估方法能够准确实现提升机健康状态评估;与粒子群优化支持向量回归(PSO−SVR)、遗传算法优化支持向量回归(GA−SVR)、灰狼算法优化支持向量回归(GWO−SVR)模型相比,HHO−SVR模型的预测结果更接近实际值,具有更好的预测效果。

     

  • 图  1  矿井提升机健康状态评估与预测系统结构

    Figure  1.  Structure of the health evaluation and prediction system for mine hoists

    图  2  矿井提升机健康状态评估指标体系

    Figure  2.  Index system for health evaluation of mine hoists

    图  3  矿井提升机健康状态评估流程

    Figure  3.  Process of health evaluation of mine hoists

    图  4  健康度与健康等级的隶属函数

    Figure  4.  Membership function of health degree and health level

    图  5  HHO−SVR模型建立流程

    Figure  5.  The process of Harris hawks optimization- support vector regression model

    图  6  实验现场

    Figure  6.  Experimental site

    图  7  各优化算法的适应度曲线

    Figure  7.  Fitness curves of each optimization algorithm

    图  8  不同模型的预测结果对比

    Figure  8.  Comparison of prediction results of different models

    图  9  不同模型的R2对比

    Figure  9.  Comparison of R2 of different models

    图  10  不同模型的误差对比

    Figure  10.  Comparison of errors of different models

    表  1  提升机主要故障位置及其原因

    Table  1.   Main fault positions and causes of hoists

    故障位置主要原因
    拖动部分电动机超速;电动机电流过大;电动机温度过高;电动机轴承过热;电动机停转;变速器轴承变形;齿轮磨损严重;减速器轴承磨损
    制动部分制动转矩过大;制动转矩过小;制动失效;制动油温过高;制动油压过小;制动闸片温度过高;制动闸片间隙过大等
    滑动控制部分油温过高;油压过高;油压过低;油量过少;油中杂质太多
    钢丝绳部分钢丝绳磨损;钢丝绳腐蚀;钢丝绳变形
    下载: 导出CSV

    表  2  矿井提升机健康状态描述和检修决策

    Table  2.   Health status description and maintenance decision of mine hoists

    健康等级描述维修决策
    健康 所有子系统和指标值都很健康,指标值接近预期 矿井提升机处于健康状态,不需要维修
    亚健康 子系统处于健康和警告的状态之间,指标值接近阈值 不影响正常运行,但要注意定期检测
    警告 一些子系统处于亚健康状态,一些指标值在故障阈值附近波动 短时间内仍能正常运行,但要提高监测频率
    故障 至少有1个子系统处于故障状态,传感器值大幅超过故障阈值 建议立即停车进行维修
    下载: 导出CSV

    表  3  矿井提升机健康等级与健康度之间的关系

    Table  3.   The relationship between the health level and health degree of mine hoists

    健康状态 健康等级 健康度
    健康(HS) V1 0.75≤d≤1.0
    亚健康(SH) V2 0.4≤d<0.75
    警告(CS) V3 0.15≤d<0.4
    故障(FS) V4 0≤d<0.15
    下载: 导出CSV

    表  4  1—9标度与指数标度的关系

    Table  4.   The relationship between 1-9 scale and exponential scale

    1—9 标度相对重要性指数标度
    1同等重要q0
    3前者比后者稍微重要一些q2
    5前者明显比后者更重要q4
    7前者比后者非常重要q6
    9前者绝对比后者更重要q8
    2,4,6,82个指标的中间值之间的逆向比较q1q3q5q7
    下载: 导出CSV

    表  5  实验平台主要参数

    Table  5.   Main parameters of the experimental platform

    参数
    提升高度/m750
    电动机功率/kW5300
    转速/(r·min−149.7
    钢丝绳直径/cm10
    提升速度/(m·s−111
    载质量/t15
    刹车数5
    下载: 导出CSV

    表  6  不同指标在不同运行阶段的数值

    Table  6.   Values of different indicators at different operating stages

    指标类型加速匀速减速
    X11成本型2.72.382.57
    X12成本型187.16114.16113.28
    X13成本型383637
    X14区间型4.283.233.75
    X21区间型0.730.630.66
    X22区间型4.073.183.66
    X23成本型363535
    X31区间型282727
    X32区间型302828
    X33成本型1.11.11.1
    X34成本型2.01.81.9
    X41区间型0.40.40.4
    X42成本型423
    X51区间型0.560.560.56
    X52区间型202023
    X53成本型0.20.20.2
    下载: 导出CSV

    表  7  指标层和子系统层的综合权重

    Table  7.   Comprehensive weights of indicator layer and subsystem layer

    子系统层子系统层
    综合权重
    指标层指标层
    综合权重
    X10.2572X110.2982
    X120.3055
    X130.1702
    X140.2261
    X20.2334X210.3573
    X220.3605
    X230.2822
    X30.1853X310.3276
    X320.3021
    X330.1780
    X340.1923
    X40.1570X410.6873
    X420.3127
    X50.1671X510.3534
    X520.3150
    X530.3316
    下载: 导出CSV
  • [1] WANG Feng,HE Fengyou. Study of hoist perception system based on IOT technology[C]. International Conference on Web Information Systems and Mining,Sanya,2010:357-360.
    [2] ZHAO Huadong,WANG Hezheng,LIU Guoning,et al. The application of Internet of things (IOT) technology in the safety monitoring system for hoisting machines[J].Applied Mechanics and Materials,2012, 1976(209/210/211):2142-2145.
    [3] LI Juanli,XIE Jiacheng,YANG Zhaojian,et al. Fault diagnosis method for a mine hoist in the Internet of things environment[J]. Sensors,2018,18(6). DOI: 10.3390/s18061920.
    [4] LEI Yaguo,LI Naipeng,GUO Liang,et al. Machinery health prognostics:a systematic review from data acquisition to RUL prediction[J]. Mechanical Systems and Signal Processing,2018,104(1):799-834.
    [5] PENG Ying,DONG Ming. A prognosis method using age-dependent hidden semi-Markov model for equipment health prediction[J]. Signal Process,2011,25(1):237-252.
    [6] LI Hong,PAN Donghui,CHEN C L P. Intelligent prognostics for battery health monitoring using the mean entropy and relevance vector machine[J]. IEEE Transactions on Systems,Man,and Cybernetics:Systems,2014,44(7):851-862.
    [7] MA Meng,CHEN Xuefeng,WANG Shibin,et al. Bearing degradation assessment based on weibull distribution and deep belief network[C]. International Symposium on Flexible Automation,Cleveland,2016:382-385.
    [8] FUSTER-PARRA P,TAULER P,BENNASAR-VENY M,et al. Bayesian network modeling:a case study of an epidemiologic system analysis of cardiovascular risk[J]. Computer Methods & Programs in Biomedicine,2016,126(12):128-142.
    [9] WANG Lanjing,ALI Y,NAZIR S,et al. ISA evaluation framework for security of Internet of health things system using AHP-TOPSIS methods[J]. IEEE Access,2020,8:152316-152332. doi: 10.1109/ACCESS.2020.3017221
    [10] MU Tongna,YU Hongmin,ZHANG Xueyan. Research on equipment health assessment based on grey system theory[C]. IEEE Prognostics and System Health Management Conference,Beijing,2012:1-4.
    [11] WEI Xiao,LUO Xiangfeng,LI Qing,et al. Online comment-based hotel quality automatic assessment using improved fuzzy comprehensive evaluation and fuzzy cognitive map[J]. IEEE Transactions on Fuzzy Systems,2015,23(1):72-84. doi: 10.1109/TFUZZ.2015.2390226
    [12] LI Juanjuan,MENG Guoying,XIE Guangming,et al. Study on health assessment method of a braking system of a mine hoist[J]. Sensors,2019,19(4). DOI: 10.3390/s19040769.
    [13] DE SANTO A,GALLI A,GRAVINA M,et al. Deep learning for HDD health assessment:an application based on LSTM[J]. IEEE Transactions on Computers,2022,71(1):69-80. doi: 10.1109/TC.2020.3042053
    [14] VATANI M,SZEREPKO M,PREBEN VIE J S. State of health prediction of li-ion batteries using incremental capacity analysis and support vector regression[C]. IEEE Milan PowerTech,Milan,2019:1-6. DOI: 10.1109/PTC.2019.8810665.
    [15] DEY P,CHAULYA S K,KUMAR S. Hybrid CNN-LSTM and IoT-based coal mine hazards monitoring and prediction system[J]. Process Safety and Environmental Protection,2021,152:249-263. doi: 10.1016/j.psep.2021.06.005
    [16] CHENG Hongju,XIE Zhe,SHI Yushi,et al. Multi-step data prediction in wireless sensor networks based on one-dimensional CNN and bidirectional LSTM[J]. IEEE Access,2019,7:117883-117896. doi: 10.1109/ACCESS.2019.2937098
    [17] REN Lei,DONG Jiabao,WANG Xiaokang,et al. A data-driven Auto-CNN-LSTM prediction model for lithium-ion battery remaining useful life[J]. IEEE Transactions on Industrial Informatics,2021,17(5):3478-3487. doi: 10.1109/TII.2020.3008223
    [18] QIN Taichun,ZENG Shengkui,GUO Jianbin. Robust prognostics for state of health estimation of lithium-ion batteries based on an improved PSO-SVR model[J]. Microelectronics Reliability,2015,55(9/10):1280-1284.
    [19] MA Jun,TENG Zhaosheng,TANG Qiu,et al. Measurement error prediction of power metering equipment using improved local outlier factor and kernel support vector regression[J]. IEEE Transactions on Industrial Electronics,2022,69(9):9575-9585. doi: 10.1109/TIE.2021.3114740
    [20] SAIDI L,ALI J B,BECHHOEFER E,et al. Wind turbine high-speed shaft bearings health prognosis through a spectral Kurtosis-derived indices and SVR[J]. Applied Acoustics,2017,120:1-8. doi: 10.1016/j.apacoust.2017.01.005
    [21] FU Wenlong,SHAO Kaixuan,TAN Jiawen,et al. Fault diagnosis for rolling bearings based on composite multiscale fine-sorted dispersion entropy and SVM with hybrid mutation SCA-HHO algorithm optimization[J]. IEEE Access,2020,8:13086-13104. doi: 10.1109/ACCESS.2020.2966582
    [22] AHMED R,ZAYED T,NASIRI F. A hybrid genetic algorithm-based fuzzy Markovian model for the deterioration modeling of healthcare facilities[J]. Algorithms,2020,13(9):210-230. doi: 10.3390/a13090210
    [23] HUANG Zhi'an,LE Tian,GAO Yukun,et al. Safety assessment of emergency training for industrial accident scenarios based on analytic hierarchy process and gray-fuzzy comprehensive assessment[J]. IEEE Access,2020,8:144767-144777. doi: 10.1109/ACCESS.2020.3013671
    [24] YU Xueyi,MU Chi,ZHANG Dongdong. Assessment of land reclamation benefits in mining areas using fuzzy comprehensive evaluation[J]. Sustainability,2020,12(5):1-20.
    [25] VAN HOUDT B. Randomized work stealing versus sharing in large-scale systems with nonexponential job sizes[J]. IEEE/ACM Transactions on Networking,2019,27(5):2137-2149. doi: 10.1109/TNET.2019.2939040
    [26] CHITSAZAN M A,FADALI M S,TRZYNADLOWSKI A M. State estimation for large-scale power systems and FACTS devices based on spanning tree maximum exponential absolute value[J]. IEEE Transactions on Power Systems,2020,35(1):238-248. doi: 10.1109/TPWRS.2019.2934705
    [27] LIN Zhenzhi,WEN Fushuan,WANG Huifang,et al. CRITIC-based node importance evaluation in skeleton-network reconfiguration of power grids[J]. IEEE Transactions on Circuits and Systems II:Express Briefs,2018,65(2):206-210.
    [28] YANG Tingfang,LIU Haifeng,ZENG Xiangjun,et al. Application of a combined decision model based on optimal weights in incipient faults diagnosis for power transformer[J]. IEEJ Transactions on Electrical and Electronic Engineering,2017,12(2):169-175. doi: 10.1002/tee.22363
    [29] GUO Yanhui,HAN Siming,SHEN Chuanhe,et al. An adaptive SVR for high-frequency stock price forecasting[J]. IEEE Access,2018,6:11397-11404. doi: 10.1109/ACCESS.2018.2806180
    [30] ZHANG Pengcheng,ZHOU Xuewu,PELLICCIONE P,et al. RBF-MLMR:a multi-label metamorphic relation prediction approach using RBF neural network[J]. IEEE Access,2017,5:21791-21805. doi: 10.1109/ACCESS.2017.2758790
  • 加载中
图(10) / 表(7)
计量
  • 文章访问数:  670
  • HTML全文浏览量:  79
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-28
  • 修回日期:  2023-10-15
  • 网络出版日期:  2023-10-24

目录

    /

    返回文章
    返回