留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进SOLOv2的煤矿图像实例分割方法

季亮

季亮. 基于改进SOLOv2的煤矿图像实例分割方法[J]. 工矿自动化,2023,49(11):115-120.  doi: 10.13272/j.issn.1671-251x.2023030017
引用本文: 季亮. 基于改进SOLOv2的煤矿图像实例分割方法[J]. 工矿自动化,2023,49(11):115-120.  doi: 10.13272/j.issn.1671-251x.2023030017
JI Liang. Coal mine image instance segmentation method based on improved SOLOv2[J]. Journal of Mine Automation,2023,49(11):115-120.  doi: 10.13272/j.issn.1671-251x.2023030017
Citation: JI Liang. Coal mine image instance segmentation method based on improved SOLOv2[J]. Journal of Mine Automation,2023,49(11):115-120.  doi: 10.13272/j.issn.1671-251x.2023030017

基于改进SOLOv2的煤矿图像实例分割方法

doi: 10.13272/j.issn.1671-251x.2023030017
基金项目: 江苏省科技成果转化专项项目(BA2022040);天地(常州)自动化股份有限公司科研项目(2022FY0007)。
详细信息
    作者简介:

    季亮(1990—),男,安徽无为人,实习研究员,硕士,现主要从事机器视觉算法方面的研究工作,E-mail:627338361@qq.com

  • 中图分类号: TD67

Coal mine image instance segmentation method based on improved SOLOv2

  • 摘要: 现有的图像分割方法用于清晰度较好的煤矿井下图像时效果良好,但应用于环境复杂的煤矿井下时,获取的图像大多较模糊且目标物体轮廓不清晰,从而影响目标物体的分割精度。针对上述问题,提出了一种基于改进SOLOv2的煤矿图像实例分割方法。将SOLOv2模型的ResNet−50网络替换为ResNeXt−18网络,从而精简网络层数,提升模型的推理速度;引入坐标注意力(CA)模块,以提升模型特征提取能力,保留精确的位置信息,提高模型的图像分割精度;采用ACON−C激活函数替换ReLU激活函数,从而使神经元之间的特征得以充分组合,增强模型的特征表达能力,进一步提高模型的图像分割精度。将改进SOLOv2模型部署在嵌入式平台上进行煤矿图像分割实验,相较于SOLOv2模型,改进SOLOv2模型的Mask AP(掩膜平均精度)提高了1.1%,模型权重文件减小了83.2 MiB,推理速度提高了5.30帧/s,达26.10 帧/s,在煤矿图像分割精度和推理速度上均有一定提升。

     

  • 图  1  SOLOv2模型结构

    Figure  1.  SOLOv2 model structure

    图  2  ResNeXt−18网络的组合模块1结构

    Figure  2.  The structure of combination module 1 in ResNeXt-18 network

    图  3  CA模块及ResNeXt−18_CA网络结构

    Figure  3.  The structures of the coordinate attention moduleand the ResNeXt-18_CA network

    图  4  煤矿图像数据集实例分割效果

    Figure  4.  Instance segmentation effect in coal mine image dataset

    表  1  ResNeXt−18网络结构参数

    Table  1.   Parameters of ResNeXt-18 network structure

    类型 滤波器
    数量
    输出
    大小
    ResNeXt−18
    (16×2d)
    标准卷积层 64 240×240 7×7,64,步长=2
    最大池化层 32 120×120 3×3,32,步长=2
    组合模块1 64 120×120 $ \left[ \begin{array}{c}3\times3,32,A=16 \\ 3\times\mathrm{3,64}\end{array} \right]\times2 $
    组合模块2 128 60×60 $ \left[ \begin{array}{c}3\times3,64,A=16 \\ 3\times\mathrm{3,128}\end{array} \right]\times2 $
    组合模块3 256 30×30 $ \left[ \begin{array}{c}3\times3,128,A=16 \\ 3\times\mathrm{3,256}\end{array} \right]\times2 $
    组合模块4 512 15×15 $ \left[ \begin{array}{c}3\times3,256,A=16 \\ 3\times\mathrm{3,512}\end{array} \right]\times2 $
    下载: 导出CSV

    表  2  在煤矿图像数据集上的改进SOLOv2模型的消融实验结果

    Table  2.   Ablation experiment results of improved SOLOv2 model on coal mine image dataset

    模型 主干特征提取网络 特征金字塔网络 激活函数 权重文件大小/MiB Mask AP/% 帧速率/(帧·s−1
    SOLOv2 ResNet−50 FPN ReLU 384.7 0.983 20.80
    改进模型1 ResNeXt−18 FPN ReLU 293.0 0.984 26.39
    改进模型2 ResNeXt−18_CA FPN ReLU 301.4 0.986 26.10
    改进模型3 ResNeXt−18 FPN ACON−C 293.0 0.988 26.37
    改进SOLOv2 ResNeXt−18_CA FPN ACON−C 301.5 0.994 26.10
    下载: 导出CSV

    表  3  不同网络模型实验结果比较

    Table  3.   Comparison of experimental results of different network models

    模型 权重文件
    大小/MiB
    Mask AP/% 帧速率/(帧·s−1
    Mask R−CNN 351.3 0.967 13.90
    SOLOv2 338.1 0.986 18.10
    改进SOLOv2 301.5 0.994 26.10
    下载: 导出CSV
  • [1] LIN Kunqi,HUANG Wenhui,FINKELMAN R B,et al. Distribution,modes of occurrence,and main factors influencing lead enrichment in Chinese coals[J]. International Journal of Coal Science & Technology,2020,7(1):1-18.
    [2] JU Yang,ZHU Yan,XIE Heping,et al. Fluidized mining and insitu transformation of deep underground coal resources:a novel approach to ensuring safe,environmentally friendly,low-carbon,and clean utilisation[J]. International Journal of Coal Science & Technology,2019,6(2):184-196.
    [3] LONG J,SHELHAMER E,DARRELL T. Fully convolutional networks for semantic segmentation[C]. IEEE Conference on Computer Vision and Pattern Recognition,Boston,2015:3431-3440.
    [4] REN Shaoqing,HE Kaiming,GIRSHICK R,et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence,2017,39(6):1137-1149.
    [5] LIU Shu,QI Lu,QIN Haifang,et al. Path aggregation network for instance segmentation[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Salt Lake City,2018:8759-8768.
    [6] HE Kaiming,GKIOXARI G,DOLLAR P,et al. Mask R-CNN[C]. IEEE International Conference on Computer Vision,Venice,2017:2980-2988.
    [7] BOLYA D,ZHOU Chong,XIAO Fanyi,et al. YOLACT:real-time instance segmentation[C]. IEEE/CVF International Conference on Computer Vision,Seoul,2019:9156-9165.
    [8] BAI Min,URTASUN R. Deep watershed transform for instance segmentation[C]. IEEE Conference on Computer Vision and Pattern Recognition,Honolulu,2017:2858-2866.
    [9] DAI Jifeng,HE Kaiming,LI Yi,et al. Instance-sensitive fully convolutional networks[C]. European Conference on Computer Vision,Amsterdam,2016:534-549.
    [10] CHEN Xinlei,GIRSHICK R,HE Kaiming,et al. TensorMask:a foundation for dense object segmentation[C]. IEEE/CVF International Conference on Computer Vision,Seoul,2019:2061-2069.
    [11] XIE Enze,SUN Peize,SONG Xiaoge,et al. PolarMask:single shot instance segmentation with polar representation[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Seattle,2020:12190-12199.
    [12] WANG Xinlong,KONG Tao,SHEN Chunhua,et al. SOLO:segmenting objects by locations[C]. European Conference on Computer Vision,Glasgow,2020:649-665.
    [13] 李明,鹿朋,朱美强,等. 基于改进YOLO−tiny的闸板阀开度检测[J]. 煤炭学报,2021,46(增刊2):1180-1190. doi: 10.13225/j.cnki.jccs.2021.0200

    LI Ming,LU Peng,ZHU Meiqiang,et al. Opening degree detection of gate valve based on improved YOLO-tiny[J]. Journal of China Coal Society,2021,46(S2):1180-1190. doi: 10.13225/j.cnki.jccs.2021.0200
    [14] 赵小虎,车亭雨,叶圣,等. 煤体红外热像异常区域分割方法[J]. 工矿自动化,2022,48(9):92-99.

    ZHAO Xiaohu,CHE Tingyu,YE Sheng,et al. Segmentation method of the abnormal area of coal infrared thermal image[J]. Journal of Mine Automation,2022,48(9):92-99.
    [15] 冯文彬,厉舒南,田昊,等. 基于融合边缘优化的煤矿图像语义分割方法[J]. 煤矿安全,2022,53(2):136-141. doi: 10.13347/j.cnki.mkaq.2022.02.022

    FENG Wenbin,LI Shunan,TIAN Hao,et al. Images semantic segmentation method based on fusion edge optimization[J]. Safety in Coal Mines,2022,53(2):136-141. doi: 10.13347/j.cnki.mkaq.2022.02.022
    [16] 杨潇,陈伟,任鹏,等. 基于域适应的煤矿环境监控图像语义分割[J]. 煤炭学报,2021,46(10):3386-3396. doi: 10.13225/j.cnki.jccs.2020.1771

    YANG Xiao,CHEN Wei,REN Peng,et al. Coal mine monitoring image semantic segmentation based on domain adaptation[J]. Journal of China Coal Society,2021,46(10):3386-3396. doi: 10.13225/j.cnki.jccs.2020.1771
    [17] 左纯子,王征,张科,等. 基于改进DeepLabV3+的煤尘图像分割方法[J]. 工矿自动化,2022,48(5):52-57,64.

    ZUO Chunzi,WANG Zheng,ZHANG Ke,et al. Coal dust image segmentation method based on improved DeepLabV3+[J]. Journal of Mine Automation,2022,48(5):52-57,64.
    [18] 司垒,王忠宾,熊祥祥,等. 基于改进U−net网络模型的综采工作面煤岩识别方法[J]. 煤炭学报,2021,46(增刊1):578-589. doi: 10.13225/j.cnki.jccs.2020.1011

    SI Lei,WANG Zhongbin,XIONG Xiangxiang,et al. Coal-rock recognition method of fully-mechanized coal mining face based on improved U-net network model[J]. Journal of China Coal Society,2021,46(S1):578-589. doi: 10.13225/j.cnki.jccs.2020.1011
    [19] WANG Xinlong,ZHANG Rufeng,KONG Tao,et al. SOLOv2:dynamic and fast instance segmentation[EB/OL]. [2023-02-20]. https://arxiv.org/abs/2003.10152.
    [20] HOU Qibin,ZHOU Daquan,FENG Jiashi. Coordinate attention for efficient mobile network design[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Nashville,2021:13708-13717.
    [21] MA Ningning,ZHANG Xiangyu,LIU Ming,et al. Activate or not:learning customized activation[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,2021:8028-8038.
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  247
  • HTML全文浏览量:  77
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-06
  • 修回日期:  2023-11-03
  • 网络出版日期:  2023-11-27

目录

    /

    返回文章
    返回