Optimization and transformation of ventilation system in Jining No.2 Coal Mine
-
摘要: 针对目前对矿井工作面通风系统风量调节及矿井降阻等方面研究较少的问题,以济宁二号煤矿10303工作面和33下02工作面为工程背景,对这2处原有的通风系统在风量调节及矿井降阻等方面进行优化改造。将工作面通风系统图导入Ventism软件中,生成实体巷道并迭代计算,构建矿井通风网络解算模型。将现场实测的主要参数输入到该模型中进行风流计算,得到的巷道内流速、温度及风量等相关数据与现场测定数据误差在标准范围内。由矿井通风阻力测定结果可知,原有通风系统存在如下问题:南翼石门调节风墙设置不合理;33下02工作面实际供风量小于理想需风量;南翼−740水平轨道大巷通风路线长,受辅助运输巷并联进风的影响,南翼回风大巷阻力大。针对上述问题,提出3条改造措施:① 在南翼回风石门和北翼带式输送机巷交汇处设置1个封闭风门,并将南翼带式输送机大巷与回风石门原有的风窗面积调整为2.9 m2;② 在三采区轨道下山延伸与33下02轨道联络巷处设置1个面积为0.1 m2的调节风窗;③ 在十一采区管子道和南翼−740水平轨道大巷接口处,将0.9 m2的调节风窗改为2.4 m2,减少南翼−740水平轨道大巷风量,增加辅助运输巷的并联风量。改造后的通风系统模拟结果表明:南翼−740水平轨道大巷阻力降低了32.7%,33下02工作面风量提升了19.8 %,矿井通风路线总阻力降低了6.4 %。改造后的通风系统现场实测结果表明:实测风量和数值模拟结果平均相对误差为1.28 %,实测阻力和数值模拟结果平均相对误差为2.52 %,模拟结果与现场实测结果基本吻合。通风系统改造后,进风井风量和阻力变化不大;回风井监测点处的风量减少,阻力降低;33下02轨道联络巷及工作面监测点处实测风量分别增加了25.3%和21.4 %,阻力增大了57.4%和41.1%;南翼−740水平轨道大巷监测点处实测风量降低了20.3 %,实测阻力减小了36.6 %。工作面风量和矿井总阻力达到预期优化效果。Abstract: Currently, there's a lack of research on air volume regulation and mine resistance reduction of ventilation system in mine working face. In order to solve the above problem, taking 10303 working face and 33low 02 working face of Jining No.2 Coal Mine as the engineering background, the original ventilation systems in these two areas are optimized and transformed in terms of air volume regulation and mine resistance reduction. The ventilation system diagram of the working face is imported into Ventism software, generating a solid roadway and iterating the calculation to construct a mine ventilation network solution model. The main parameters measured on-site are input into the model for airflow calculation. The errors between calculated relevant data such as flow velocity, temperature, and air volume in the roadway obtained and the on-site measurement data are within the standard range. From the measurement results of mine ventilation resistance, it can be seen that the original ventilation system has the following problems. The setting of the regulating air wall at the south wing stone gate is unreasonable. The actual air supply volume of 33low02 working face is less than the ideal air volume. The ventilation route of the south wing -740 horizontal track main roadway is long. It is affected by the parallel intake of auxiliary transportation roadways, resulting in high resistance in the south wing return air main roadway. In order to solve the above problems, three renovation measures are proposed. ① A closed air door is installed at the intersection of the south wing return air stone gate and the north wing belt conveyor roadway. The original air window area of the south wing belt conveyor roadway and return air stone gate is adjusted to 2.9 m2. ② A 0.1 m2 adjustable wind window is installed at the intersection of the extension of the third mining area's track downhill and the 33low02 connecting roadway. ③ The 0.9 m2 adjustable air window at the interface between the pipe duct in the 11th mining area and the south wing -740 horizontal track roadwayhas been changed to 2.4 m2,so as to reduce the air volume of the south wing -740 horizontal track roadway and increase the parallel air volume of the auxiliary transportation roadway. The simulation results of the modified ventilation system show that the resistance of the southern wing -740 horizontal track main roadway has been reduced by 32.7%. The air volume of the 33low02 working face has been increased by 19.8%. The total resistance of the mine ventilation route has been reduced by 6.4%. The on-site measurement results of the modified ventilation system show that the average relative error between the measured air volume and numerical simulation results is 1.28%. The average relative error between the measured resistance and numerical simulation results is 2.52%. The optimized simulation results are basically consistent with the on-site test results. The range of changes in air volume and resistance of the intake shaft before and after the entilation system adjustment is not significant. The air volume at the measuring point of the return air shaft decreases, and resistance decreased. The optimized measured air volume at the 33low02 track connecting roadway and the measuring points of the working face increase by 25.3% and 21.4%, respectively, and the resistances increase by 57.4% and 41.1%. The optimized measured air volume at the south wing -740 horizontal track roadway decreases by 20.3%, and resistance decreases by 36.6%. After the renovation, the air volume of the working face and the total resistance of the mine have achieved the expected results.
-
表 1 济宁二号煤矿通风路线阻力测定数据
Table 1. Measurement data of ventilation route resistance in Jining No.2 Coal Mine
测点序号 巷道名称 巷道长度/m 断面积/m2 风阻/(N·s2·m−8) 测段阻力/Pa 风量/(m3·s−1) 风速/(m·s−1) 1 主井 593.0 15.9 0.002 8 6.63 48.5 3.00 2 副井 593.0 17.7 0.002 8 163.80 241.0 12.3 3 南翼轨道大巷 1 105.6 18.9 0.009 7 175.00 134.7 7.07 4 南翼辅助进风大巷 980.0 10.4 0.019 8 122.44 78.6 7.56 5 南翼−740水平轨道大巷 2 286.9 18.0 0.002 0 11.56 76.0 4.22 6 十采区轨道巷 3 340.0 17.6 0.184 5 494.57 51.8 2.90 7 10303辅助运输联络巷 151.5 16.9 0.009 0 7.52 28.9 1.20 8 10303工作面 251.0 22.5 0.110 0 89.34 28.8 1.30 9 十采区带式输送机巷 2 193.0 13.9 0.184 5 5.80 5.6 0.40 10 西翼通风巷 1 406.2 18.5 0.015 0 30.90 45.4 2.45 11 西翼回风石门联络巷 350.5 18.8 0.001 7 1.73 31.9 3.10 12 三采区轨道下山 1 106.0 13.0 0.084 4 110.00 36.1 2.78 13 33下02轨道联络巷 92.4 16.9 0.016 2 12.29 27.6 1.40 14 33下02工作面 205.0 22.5 0.090 0 55.26 24.8 1.20 15 南翼带式输送机大巷 976.9 19.3 0.037 8 81.20 46.4 2.36 16 北翼带式输送机大巷 3 268.6 18.6 0.015 1 13.77 30.2 2.21 17 4300运输联络巷 288.7 17.6 0.043 7 38.84 29.8 0.23 18 北翼回风大巷 862.4 18.0 0.132 2 103.86 28.0 1.56 19 南翼回风大巷 853.0 18.6 0.015 0 227.45 123.5 6.40 20 回风井 562.0 22.5 0.005 8 471.50 283.0 13.1 表 2 矿井通风系统优化前后监测点风量、阻力
Table 2. Air volume and resistance of measuring points before and after mine ventilation systen optimization
巷道
名称风量/(m3·s−1) 阻力/Pa 优化前 优化后 优化前 优化后 主井 48.5 48.1 6.59 6.52 副井 241.0 241.2 163.63 164.06 南翼轨道大巷 126.3 126.9 154.73 155.40 南翼辅助进风大巷 79.2 79.5 124.20 125.27 南翼−740水平轨道大巷 75.6 62.0 11.43 7.69 十采区轨道巷 52.6 52.2 510.47 502.62 10303辅助运输联络巷 28.7 28.5 7.41 7.31 10303工作面 28.7 28.4 90.61 88.72 十采区带式输送机巷 5.8 5.6 6.21 5.78 西翼通风巷 45.6 45.0 31.19 30.38 西翼回风石门联络巷 31.9 29.8 1.73 1.51 三采区轨道下山 36.1 37.6 109.99 119.28 33下02轨道联络巷 27.6 35.2 12.34 20.02 33下02工作面 24.8 29.7 55.26 79.39 南翼带式输送机大巷 52.0 46.9 102.21 83.04 北翼带式输送机大巷 31 1.9 14.51 0.05 4300运输联络巷 30.1 0.9 39.59 0.04 北翼回风大巷 28 1.2 103.64 0.19 南翼回风大巷 120.6 123.0 218.17 226.78 回风井 285.3 282.0 472.10 457.26 表 3 通风系统优化前后实测数据与模拟结果
Table 3. Measured data and simulation results before and after ventilation system optimization
监测点 优化前风量/
(m3·s−1)优化后风量/
(m3·s−1)优化前
阻力/Pa优化后
阻力/Pa实测值 模拟值 实测值 模拟值 实测值 模拟值 实测值 模拟值 进风井 289.5 289.5 288.1 289.3 170.43 170.22 168.20 170.50 回风井 283.0 285.3 280.5 282.0 471.50 472.10 452.40 457.00 33下02轨道联络巷 27.6 27.6 34.6 35.2 12.29 12.34 19.35 20.00 33下02工作面 24.8 24.8 30.1 29.7 55.26 55.26 78.00 79.39 南翼−740水平轨道大巷 76.0 75.60 60.5 62.0 11.56 11.43 7.32 7.68 表 4 优化后通风网络解算结果
Table 4. Calculation results of ventilation network after optimization
分支序号 巷道名称 始节点 末节点 风阻/(N·s2·m−8) 测段阻力/Pa 风量/(m3·s−1) 1 主井 1 2 0.0028 6.48 48.1 2 副井 1 3 0.0028 161.28 240.0 3 南翼轨道大巷 2 4 0.0097 150.35 124.5 4 南翼辅助进风大巷 3 4 0.0198 126.40 79.9 5 南翼1号变电所、水泵 4 5 40.0832 212.04 2.3 6 三采区轨道下山 5 6 0.0844 118.69 37.5 7 33下02轨道联络巷 6 7 0.0162 19.35 34.6 8 33下02轨道机头 7 8 62.8125 492.45 2.8 9 33下02工作面 7 9 0.0900 78.00 30.1 10 三采区带式输送机下山 9 10 0.1741 196.55 33.6 11 南翼带式输送机大巷 10 11 0.0378 103.79 52.4 12 北翼带式输送机大巷 11 13 0.0151 0.07 2.1 13 4300运输联络巷 14 15 0.0437 0.06 1.2 14 北翼回风大巷 14 15 0.1322 0.16 1.1 15 北翼回风石门联络巷 15 12 0.0008 0.01 1.2 16 南翼进风下山 16 17 0.0428 559.16 114.3 17 南翼轨道下山 16 19 0.0505 613.27 110.2 18 十一采区管子道 17 18 0.0023 10.71 68.23 19 −740辅助运输巷 18 20 0.0035 12.02 58.6 20 9310轨道回风巷 20 21 0.0264 22.97 29.5 21 9310切眼 21 22 0.1023 88.42 29.4 22 9310运输机巷 22 23 0.0437 37.26 29.2 23 十采区轨道巷 23 24 0.1845 510.47 52.6 24 十采区进风巷 25 26 0.0097 25.43 51.2 25 10303辅助运输联络巷 26 27 0.0090 7.26 28.4 26 10303工作面 27 28 0.1100 88.10 28.3 27 西翼通风巷 28 29 0.0150 30.78 45.3 28 西翼回风巷 29 30 0.0121 25.72 46.1 29 西翼回风石门联络巷 30 12 0.0017 1.51 29.8 30 十采区带式输送机巷 30 31 0.1845 5.99 5.7 31 南翼−740水平带式输送机大巷 31 32 0.6778 1015.13 38.7 32 南翼带式输送机下山 32 33 0.1541 952.02 78.6 33 南翼带式输送机大巷 33 12 0.0116 16.40 37.6 34 南翼−740水平轨道大巷 19 34 0.0020 7.32 60.5 35 南翼−740水平回风大巷 34 35 0.0189 71.25 61.4 36 南翼回风下山 35 36 0.0960 620.56 80.4 37 南翼回风大巷 35 12 0.0150 211.80 121.6 38 回风井 12 1 0.0058 456.35 280.5 -
[1] 李兴旺. 优化矿井通风与安全生产的关系研究[J]. 矿业装备,2021(6):164-165.LI Xingwang. Study on the relationship between optimizing mine ventilation and safety production[J]. Mining Equipment,2021(6):164-165. [2] 袁明昌,支学艺,吴亚军. 武山铜矿通风系统优化研究[J]. 矿业研究与开发,2019,39(6):118-121.YUAN Mingchang,ZHI Xueyi,WU Yajun. Study on optimization of ventilation system in Wushan Copper Mine[J]. Mining Research and Development,2019,39(6):118-121. [3] 闫岩. 基于Ventsim模型矿井通风优化研究[J]. 煤炭与化工,2021,44(6):115-117.YAN Yan. Study on mine ventilation optimization based on Ventsim model[J]. Coal and Chemical Industry,2021,44(6):115-117. [4] 郝海清,蒋曙光,王凯,等. 基于Ventsim的矿井运输巷火灾风烟流应急调控技术[J]. 煤矿安全,2022,53(9):38-46.HAO Haiqing,JIANG Shuguang,WANG Kai,et al. Emergency control technology of air and smoke flow in mine belt roadway fire based on Ventsim software[J]. Safety in Coal Mines,2022,53(9):38-46. [5] 石银斌. 五虎山矿井通风量数值模拟优化研究[J]. 工矿自动化,2021,47(增刊1):75-77.SHI Yinbin. Research on numerical simulation and optimization of ventilation rate in Wuhushan Coal Mine[J]. Industry and Mine Automation,2021,47(S1):75-77. [6] 何敏,武福生,成燕玲. 基于三维模型的通风系统优化调控模拟分析[J]. 工矿自动化,2016,42(11):41-44.HE Min,WU Fusheng,CHENG Yanling. Simulation analysis of optimal regulation and control of ventilation system based on 3D model[J]. Industry and Mine Automation,2016,42(11):41-44. [7] 卢辉,袁树杰,马瑞峰,等. 基于Ventsim的南山煤矿孤岛工作面均压通风方案研究[J]. 中国安全生产科学技术,2020,16(8):125-130.LU Hui,YUAN Shujie,MA Ruifeng,et al. Study on scheme of pressure equalizing ventilation in isolated island working face of Nanshan coal mine based on Ventsim[J]. Journal of Safety Science and Technology,2020,16(8):125-130. [8] 辛嵩,侯传彬,金晓娜,等. 基于Ventsim模型的矿井单翼通风系统优化研究[J]. 矿业安全与环保,2019,46(6):84-88.XIN Song,HOU Chuanbin,JIN Xiaona,et al. Optimization of mine single-wing ventilation system based on ventsim[J]. Mining Safety & Environmental Protection,2019,46(6):84-88. [9] 陈浩,陈宜华,胡秀林,等. 基于Ventsim的深井金属矿山通风系统优化[J]. 工业安全与环保,2018,44(4):30-33.CHEN Hao,CHEN Yihua,HU Xiulin,et al. Ventilation system optimization of deep well metal mine based on ventsim[J]. Industrial Safety and Environmental Protection,2018,44(4):30-33. [10] 耿守锋. 矿井通风系统三维模型构建与优化设计[J]. 煤矿现代化,2022,31(1):77-79.GENG Shoufeng. Three-dimensional model construction and optimal design of mine ventilation system[J]. Coal Mine Modernization,2022,31(1):77-79. [11] 肖梦辉,于涛,常宝孟,等. 基于Ventsim的复杂矿井火灾数值模拟研究[J]. 矿业研究与开发,2021,41(12):129-134.XIAO Menghui,YU Tao,CHANG Baomeng,et al. Numerical simulation study on complex mine fire based on ventsim[J]. Mining Research and Development,2021,41(12):129-134. [12] 任浩. 新发煤业通风系统优化研究[D]. 包头: 内蒙古科技大学, 2020.REN Hao. Study on optimization of ventilation system in Xinfa Coal Mine[D]. Baotou: Inner Mongolia University of Science & Technology, 2020 [13] 曹怀轩. 基于Ventsim的复杂通风系统优化及监测预警研究[D]. 青岛: 山东科技大学, 2020.CAO Huaixuan. Research on optimization and monitoring early warning of complex ventilation system based on Ventsim[D]. Qingdao: Shandong University of Science and Technology, 2020. [14] 朱旭东. 基于Ventsim的漳村矿通风系统优化研究[D]. 焦作: 河南理工大学, 2020.ZHU Xudong. Study on optimization of ventilation system of Zhangcun Mine based on Ventsim[D]. Jiaozuo: Henan Polytechnic University, 2020. [15] 陈艳丽. 基于Ventsim的矿井通风系统稳定性分析[D]. 长沙: 中南大学, 2014.CHEN Yanli. The stability analysis of mine ventilation system on Ventsim software[D]. Changsha: Central South University, 2014. [16] 陶维国,姜希印,王连涛,等. 济宁二号煤矿通风系统优化研究与实施[J]. 煤矿现代化,2016(4):130-133.TAO Weiguo,JIANG Xiyin,WANG Liantao,et al. The optimize researches and implement on ventilation system of Jining NO. 2 Coal Mine[J]. Coal Mine Modernization,2016(4):130-133. [17] 王绪友,王连涛,陶维国,等. 济宁二号煤矿沿空留巷工作面通风系统优化研究[J]. 矿业安全与环保,2016,43(1):77-80.WANG Xuyou,WANG Liantao,TAO Weiguo,et al. Study on ventilation system optimization of working face with gob-side entry retaining in Jining No. 2 Coal Mine[J]. Mining Safety & Environmental Protection,2016,43(1):77-80. [18] 郭鹏阁. 基于VSE软件的矿井通风系统优化研究[J]. 山东煤炭科技,2021,39(3):103-106.GUO Pengge. Research on optimization of mine ventilation system based on VSE software[J]. Shandong Coal Science and Technology,2021,39(3):103-106. [19] 谢中朋. 复杂矿井通风系统稳定性研究[D]. 北京: 中国矿业大学(北京), 2015.XIE Zhongpeng. Research on stability of complicated mine ventilation system[D]. Beijing: China University of Mining and Technology-Beijing, 2015. [20] 孙利阳. 鲁奎山铁矿通风系统优化方案研究[D]. 昆明: 昆明理工大学, 2021.SUN Liyang. Study on the optimization scheme of ventilation system in Rukui Mountain Iron Mine[D]. Kunming: Kunming University of Science and Technology, 2021.