Shape monitoring of scraper conveyor based on inertial measurement unit
-
摘要: 刮板输送机作为综采工作面的核心运输装备,准确感知其形态是提升其带载能力、缓解传动冲击、改善综采工作面直线度的重要前提。目前常用的刮板输送机形态间接测量方法难以准确表征其形态,导致测量模型误差较大。针对该问题,采用惯性测量单元直接测量刮板输送机中部槽原始位姿信息,实现刮板输送机形态数据的准确获取。采用融合Heursure阈值规则和新阈值函数的小波阈值去噪方法滤除中部槽运动加速度信号中的噪声干扰,在此基础上分析了中部槽运动特征,设计了基于随机森林的中部槽运动状态识别模型,根据运动状态识别结果采用不同的策略更新中部槽位置,减小了随时间累计的IMU数据误差,提升了IMU位置解算精度。设计了改进哈里斯鹰优化(HHO)算法优化无迹卡尔曼滤波(UKF)进行中部槽姿态解算,通过实验验证了该方法解算的姿态角满足中部槽姿态测量要求。搭建了刮板输送机形态监测实验平台,对基于运动状态识别和改进HHO优化UKF的刮板输送机形态解算方法进行实验验证,结果表明:刮板输送机进行单次推溜且步距为250 mm时,由10节中部槽组成的刮板输送机在底板水平工况下,X,Y轴方向上位移的最大累计误差分别为6.4,8.4 mm,Z轴方向上位移始终保持不变,俯仰角、横滚角和航向角的最大累计误差分别为−0.148,−0.035,0.457º;在底板起伏工况下,X,Y,Z轴方向上位移的最大累计误差分别为6.6,11.5,6.9 mm,俯仰角、横滚角和航向角的最大累计误差分别为−0.540,−0.157,0.817º。该方法可有效抑制累计误差,降低测量误差,实现刮板输送机形态的准确感知。Abstract: Scraper conveyor is the core transportation equipment of the fully mechanized working face. Accurately perceiving its form is an important prerequisite to enhance its carrying capacity, alleviate the transmission impact, and improve the straightness of fully mechanized working face. The commonly used indirect measurement methods for the shape of scraper conveyors are difficult to accurately characterize their shape, resulting in significant measurement model errors. To address this issue, an inertial measurement unit is used to directly measure the original pose information of the middle trough of scraper conveyor, achieving accurate acquisition of the shape data of scraper conveyor. A wavelet thresholding denoising method that combines Heursure threshold rules and a new threshold function is used to filter out noise interference in the acceleration signal of the middle trough. Based on this, the motion features of the middle trough are analyzed, and a middle trough motion state recognition model based on random forest algorithm is designed. Based on the motion state recognition results, different strategies are used to update the position of the middle trough. It reduces the accumulated IMU data error over time and improves the precision of IMU position calculation. The improved Harris hawk optimization (HHO) algorithm unscented Kalman filter (UKF) is designed for middle trough attitude calculation. It is verified through experiments that the attitude angle calculated by this method meets the requirements of middle trough attitude measurement. The experimental platform for shape monitoring of scraper conveyors is constructed. It conducts experimental verification on the shape calculation method of scraper conveyors based on motion state recognition and improved HHO optimized UKF. The results show that when the scraper conveyor performs a single sliding with a step distance of 250 mm, the maximum cumulative errors of displacement in the X and Y directions of the scraper conveyor composed of 10 middle troughs are 6.4 mm and 8.4 mm respectively under the horizontal working condition of bottom plate. It remains unchanged in the Z direction. The maximum cumulative errors of pitch angle, roll angle, and heading angle are −0.148°, −0.035°, and 0.457° respectively. Under the working condition of floor undulation, the maximum cumulative errors of displacement in the X, Y, and Z directions are 6.6 mm, 11.5 mm, and 6.9 mm respectively. The maximum cumulative errors of pitch angle, roll angle, and heading angle are −0.540°, −0.157°, and 0.817° respectively. This method can effectively suppress cumulative errors, reduce measurement errors, and achieve accurate perception of the shape of the scraper conveyor.
-
表 1 样本特征数据
Table 1. Feature data of samples
序号 F3 F4 F7 F8 1 0.696 4 0.652 9 0.046 0 0.409 7 2 0.684 0 0.650 6 0.054 8 0.390 5 ︙ ︙ ︙ ︙ ︙ 1 001 0.826 7 −0.248 5 0.342 7 0.770 5 ︙ ︙ ︙ ︙ ︙ 2 000 0.474 0 −0.678 3 0.137 9 0.287 7 表 2 中部槽运动状态识别结果
Table 2. Recognition results of motion states of middle trough
序号 状态 准确率/% 1 S1 100 2 S2 96.4 3 S3 100 4 S4 97.9 表 3 4种姿态解算算法的误差比较
Table 3. Error comparison of four attitude calculation algorithms
(°) 指标 EKF UKF HHO优化UKF 改进HHO优化UKF 航向角 最大误差 0.466 0.437 0.404 0.193 平均绝对值误差 0.251 0.198 0.165 0.057 横滚角 最大误差 −0.008 −0.005 −0.003 −0.003 平均绝对值误差 0.002 5.499×10−4 6.528×10−4 5.188×10−4 俯仰角 最大误差 0.025 0.012 0.011 0.010 平均绝对值误差 0.103 0.005 0.001 5.805×10−4 -
[1] 司垒,李嘉豪,谭超,等. 矿用刮板输送机垂直冲击下负载电流特性研究[J]. 煤炭科学技术,2023,51(2):400-411. doi: 10.13199/j.cnki.cst.2021-1140SI Lei,LI Jiahao,TAN Chao,et al. Study on load current characteristics of scraper conveyor under vertical impact[J]. Coal Science and Technology,2023,51(2):400-411. doi: 10.13199/j.cnki.cst.2021-1140 [2] 徐亮. 我国煤炭开发建设现状与“十四五”展望[J]. 中国煤炭,2021,47(3):44-48. doi: 10.3969/j.issn.1006-530X.2021.03.006XU Liang. The present situation and expectation of coal exploitation and construction in China's 14th Five-Year Plan period[J]. China Coal,2021,47(3):44-48. doi: 10.3969/j.issn.1006-530X.2021.03.006 [3] 毛君. 刮板输送机动力学行为分析与控制理论研究[D]. 阜新: 辽宁工程技术大学, 2006.MAO Jun. Dynamical behavior analysis and control theory research of scraper conveyor[D]. Fuxin: Liaoning Technical University, 2006. [4] 王学文,李素华,谢嘉成,等. 机器人运动学与时序预测融合驱动的刮板输送机调直方法[J]. 煤炭学报,2021,46(2):652-666. doi: 10.13225/j.cnki.jccs.XR20.1897WANG Xuewen,LI Suhua,XIE Jiacheng,et al. Straightening method of scraper conveyor driven by robot kinematics and time series prediction[J]. Journal of China Coal Society,2021,46(2):652-666. doi: 10.13225/j.cnki.jccs.XR20.1897 [5] 刘婷. 刮板输送机S弯区域水平弯曲角优化关键技术研究[D]. 徐州: 中国矿业大学, 2019.LIU Ting. Research on key technologies for optimizing horizontal bending angle in S-bending area of scraper conveyor[D]. Xuzhou: China University of Mining and Technology, 2019. [6] 乔春光,王学文,谢嘉成,等. 刮板输送机水平面形态检测方法[J]. 工矿自动化,2018,44(8):52-57. doi: 10.13272/j.issn.1671-251x.2018060004QIAO Chunguang,WANG Xuewen,XIE Jiacheng,et al. Horizontal shape detection method for scraper conveyor[J]. Industry and Mine Automation,2018,44(8):52-57. doi: 10.13272/j.issn.1671-251x.2018060004 [7] KELLY M S,HAINSWORTH D W. The landmark longwall automation project[J]. Acarp Project,2005,1:1-7. [8] REID D C, HAINSWORTH D W, RALSTON J C, et al. Shearer guidance: a major advance in longwall mining[C]. The 4th International Conference on Field and Service Robotics, 2003: 469-476. [9] RALSTON J C,REID D C,DUNN M T,et al. Longwall automation:delivering enabling technology to achieve safer and more productive underground mining[J]. International Journal of Mining Science and Technology,2015,25(6):865-876. doi: 10.1016/j.ijmst.2015.09.001 [10] 乔春光,王学文,谢嘉成,等. 基于采煤机运行轨迹的刮板输送机竖直面形态解算方法[J]. 工程设计学报,2018,25(5):495-502. doi: 10.3785/j.issn.1006-754X.2018.05.001QIAO Chunguang,WANG Xuewen,XIE Jiacheng,et al. Vertical plane shape calculation method of scraper conveyor based on running track of shearer[J]. Chinese Journal of Engineering Design,2018,25(5):495-502. doi: 10.3785/j.issn.1006-754X.2018.05.001 [11] 刘旭,王世博,韩子晨,等. 刮板输送机调直方法研究[J]. 煤矿机械,2020,41(6):54-57. doi: 10.13436/j.mkjx.202006018LIU Xu,WANG Shibo,HAN Zichen,et al. Study on face alignment method of scraper conveyor[J]. Coal Mine Machinery,2020,41(6):54-57. doi: 10.13436/j.mkjx.202006018 [12] 李宁. 智能工作面中刮板输送机直线度感知技术[J]. 机电工程技术,2021,50(3):186-188. doi: 10.3969/j.issn.1009-9492.2021.03.051LI Ning. Straightness sensing technology of scraper conveyor of intelligent face[J]. Mechanical & Electrical Engineering Technology,2021,50(3):186-188. doi: 10.3969/j.issn.1009-9492.2021.03.051 [13] 王超,李威,杨海,等. 基于航位推测的刮板输送机形态检测研究[J]. 煤炭学报,2017,42(8):2173-2180. doi: 10.13225/j.cnki.jccs.2016.1642WANG Chao,LI Wei,YANG Hai,et al. Scraper conveyor shape detection based on dead reckoning[J]. Journal of China Coal Society,2017,42(8):2173-2180. doi: 10.13225/j.cnki.jccs.2016.1642 [14] 权志桥. 智能工作面刮板输送机直线度FBG感知研究[D]. 徐州: 中国矿业大学, 2021.QUAN Zhiqiao. Research on straightness FBG perception of scraper conveyor in intelligent working face[D]. Xuzhou: China University of Mining and Technology, 2021. [15] 刘鹏坤. 基于视觉测量的综采工作面直线度控制研究[D]. 北京: 中国矿业大学(北京), 2020.LIU Pengkun. Research on straightness control of fully mechanized coal face based on vision measurement[D]. Beijing: China University of Mining and Technology-Beijing, 2020. [16] DONOHO D L,JOHNSTONE I M. Adapting to unknown smoothness via wavelet shrinkage[J]. Journal of the American Statistical Association,1995,90(432):1200-1224. doi: 10.1080/01621459.1995.10476626 [17] BREIMAN L. Random forests[J]. Machine Learning,2001,45(1):5-32. doi: 10.1023/A:1010933404324 [18] BREIMAN L. Bagging predictors[J]. Machine Learning,1996,24(2):123-140. [19] JULIER S,UHLMANN J K. Unscented filtering and nonlinear estimation[J]. Proceedings of the IEEE,2004,92(3):401-422. doi: 10.1109/JPROC.2003.823141 [20] 闫小龙,陈国光,田晓丽. 两步快速可重构无迹卡尔曼滤波算法测量导弹滚转角[J]. 仪器仪表学报,2018,39(6):140-147. doi: 10.19650/j.cnki.cjsi.J1803312YAN Xiaolong,CHEN Guoguang,TIAN Xiaoli. Two-step fast reconfigurable unscented Kalman filter algorithm for measurement of missile rolling angle[J]. Chinese Journal of Scientific Instrument,2018,39(6):140-147. doi: 10.19650/j.cnki.cjsi.J1803312 [21] HEIDARI A A,MIRJALILI S,FARIS H,et al. Harris hawks optimization:algorithm and applications[J]. Future Generation Computer Systems,2019,97:849-872. doi: 10.1016/j.future.2019.02.028 [22] 翟光,王妍欣,孙一勇. 基于低轨星网的多目标协同跟踪滤波技术[J]. 系统工程与电子技术,2022,44(6):1957-1967. doi: 10.12305/j.issn.1001-506X.2022.06.23ZHAI Guang,WANG Yanxin,SUN Yiyong. Cooperative tracking filtering technology of multi-target based on low orbit satellite constellation[J]. Systems Engineering and Electronics,2022,44(6):1957-1967. doi: 10.12305/j.issn.1001-506X.2022.06.23 [23] 汤安迪,韩统,徐登武,等. 混沌精英哈里斯鹰优化算法[J]. 计算机应用,2021,41(8):2265-2272. doi: 10.11772/j.issn.1001-9081.2020101610TANG Andi,HAN Tong,XU Dengwu,et al. Chaotic elite Harris hawks optimization algorithm[J]. Journal of Computer Applications,2021,41(8):2265-2272. doi: 10.11772/j.issn.1001-9081.2020101610