Research on the influence of cyclic stress damage on coal bursting liability
-
摘要: 目前对煤岩体动力学行为特征的研究仅考虑了温度、围压等原始地质作用影响,并未考虑煤炭开采过程中产生的循环应力作用对煤体动力学特性的影响;且对煤体动力学显现特征的判定是以煤体冲击倾向性指标为基本依据,而循环应力损伤作用对煤体冲击倾向性及其动力学特性的影响尚未进行深入研究。针对上述问题,对煤样开展了循环应力损伤试验,分析了恒上下限及变上限2种循环应力损伤条件下的煤体冲击倾向性变化特征。试验结果表明:① 煤体经恒上下限循环应力作用及变上限循环应力作用后静态抗压强度分别降低了13.86%与16.00%,循环应力会对煤体力学强度产生劣化。② 原始煤体剩余弹性能指数为27.34 kJ·m−3,表示该煤体具有弱冲击倾向性,经过恒上下限循环应力损伤及变上限循环应力损伤后煤体剩余弹性能指数分别降低了约26.30%及 36.14%,表明循环应力对煤体的冲击倾向性有显著的弱化作用。③ 随着煤体剩余弹性能指数的降低,煤体动态抗压强度与动态弹性模量均减小,而动态破坏变形不断增大,表明煤体冲击倾向性将直接影响其动力学特征,煤体冲击倾向性越大,其冲击动力学相关参数劣化程度越高。④ 随着煤体剩余弹性能指数不断降低,冲击后煤体破碎分形维数降低,表明循环应力使得煤体受冲击后崩解不充分,动力学响应减弱。Abstract: Currently, research on the dynamic behavior features of coal and rock masses only considers the influence of original geological processes such as temperature and confining pressure, without considering the impact of cyclic stress generated during coal mining on the dynamic features of coal. And the determination of the dynamic features of coal is based on the index of coal bursting liability. The impact of cyclic stress damage on coal bursting liability and its dynamic features has not been thoroughly studied. In order to solve the above problems, cyclic stress damage tests are conducted on coal samples. The variation features of coal bursting liability under two cyclic stress damage conditions, namely constant upper and lower limits and variable upper limits, are analyzed. The experimental results show the following points. ① The static compressive strength of coal under the action of constant upper and lower limit cyclic stress and variable upper limit cyclic stress has decreased by 13.86% and 16.00%, respectively. Cyclic stress can degrade the mechanical strength of coal. ② The remaining elastic energy index of the original coal body is 27.34 kJ·m−3. It indicates that the coal body has a weak bursting liability. After constant upper and lower limit cyclic stress damage and variable upper limit cyclic stress damage, the remaining elastic energy index of the coal body has decreased by about 26.30% and 36.14%, respectively. It indicates that cyclic stress has a significant weakening effect on the bursting liability of the coal body. ③ As the remaining elastic energy index of the coal decreases, the dynamic compressive strength and dynamic elastic modulus of the coal decrease, while the dynamic failure deformation continuously increases. It indicates that the bursting liability of the coal will directly affect its dynamic features. The greater the bursting liability of the coal, the higher the degree of degradation of its impact dynamics related parameters. ④ As the remaining elastic energy index of the coal body continues to decrease, the fractal dimension of coal fragmentation after impact decreases. It indicates that cyclic stress leads to insufficient disintegration of the coal body after impact and weakened dynamic response.
-
Key words:
- coal body /
- coal dynamics /
- bursting liability /
- residual elastic energy index /
- impact load /
- cyclic stress damage
-
图 6 典型Mh1煤试件经过100次恒上下限应力循环试验与典型Mb1煤试件经过100次变上限应力循环试验过程中声发射事件累计数与空间分布
Figure 6. The cumulative number and spatial distribution of acoustic emission events in typical Mh1 coal specimens after 100 times of constant upper and lower limit stress cycle tests and typical Mb1 coal specimens after 100 times of variable upper limit stress cycle test
表 1 2类循环加卸载条件下煤试件的试验结果
Table 1. Test results of coal specimen under two kinds of cyclic loading and unloading conditions
加载
类型试件
编号第1次
循环/(kJ·m−3)第10次
循环/(kJ·m−3)第50次
循环/(kJ·m−3)第80次
循环/(kJ·m−3)第100次
循环/(kJ·m−3)P/MPa Uec/
(kJ·m−3)Udp/
(kJ·m−3)Uin1 Ue1 Uin10 Ue10 Uin50 Ue50 Uin80 Ue80 Uin100 Ue100 恒上下限循环 Mh1 16.76 13.12 16.14 12.89 13.75 13.56 12.37 10.57 11.87 9.48 9.15 25.38 4.17 Mh2 16.15 12.87 15.57 12.24 13.02 12.72 11.82 10.04 11.14 9.11 8.86 24.12 5.03 变上限循环 Mb1 17.25 14.02 17.98 14.56 21.13 19.32 23.48 21.06 25.74 21.89 8.56 23.75 5.91 Mb2 18.12 15.26 18.68 15.08 21.67 19.88 23.76 21.47 26.42 23.41 9.02 24.81 7.73 表 2 循环应力损伤后煤样动力学破碎块度分析
Table 2. Dynamic fragmentation analysis of coal samples after cyclic stress damage
CEF/(kJ·m−3) r/mm 直径小于r的
煤块质量/kgk/% $ \ln \dfrac{r}{{\rm{mm}}} $ ln k D 27.34 12 20.37 32.59 2.42 2.73 1.37 10 14.22 22.75 2.04 2.28 8 10.74 17.18 1.54 1.82 6 7.12 11.39 1.21 1.38 4 4.65 7.44 0.89 1.14 3 3.06 4.90 0.77 0.97 2 2.34 0.037 0.54 −0.50 20.15 12 18.42 29.00 2.11 2.47 1.20 10 12.36 19.46 1.82 2.05 8 11.04 17.39 1.78 1.92 6 8.55 13.46 1.65 1.87 4 6.11 9.62 1.31 1.50 3 4.17 6.57 1.07 1.28 2 2.85 4.49 0.80 −0.51 17.46 12 15.72 23.93 2.07 2.38 1.13 10 11.37 17.31 1.80 1.97 8 10.68 16.26 1.75 1.91 6 10.33 15.72 1.67 1.82 4 8.01 12.19 1.52 1.75 3 6.44 9.80 1.28 1.47 2 3.15 4.79 0.98 −0.32 -
[1] 王国法. 煤矿智能化最新技术进展与问题探讨[J]. 煤炭科学技术,2022,50(1):1-27. doi: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201001WANG Guofa. New technological progress of coal mine intelligence and its problems[J]. Coal Science and Technology,2022,50(1):1-27. doi: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201001 [2] 谢和平,高明忠,付成行,等. 深部不同深度岩石脆延转化力学行为研究[J]. 煤炭学报,2021,46(3):701-715. doi: 10.13225/j.cnki.jccs.yt21.0157XIE Heping,GAO Mingzhong,FU Chenghang,et al. Mechanical behavior of brittle-ductile transition in rocks at different depths[J]. Journal of China Coal Society,2021,46(3):701-715. doi: 10.13225/j.cnki.jccs.yt21.0157 [3] 姜耀东,赵毅鑫. 我国煤矿冲击地压的研究现状:机制、预警与控制[J]. 岩石力学与工程学报,2015,34(11):2188-2204. doi: 10.13722/j.cnki.jrme.2015.1076JIANG Yaodong,ZHAO Yixin. State of the art:investigation on mechanism,forecast and control of coal bumps in China[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(11):2188-2204. doi: 10.13722/j.cnki.jrme.2015.1076 [4] 王天佐,王春力,薛飞,等. 不同循环加卸载路径下红砂岩声发射与应变场演化规律研究[J]. 岩石力学与工程学报,2022,41(增刊1):2881-2891. doi: 10.13722/j.cnki.jrme.2021.0261WANG Tianzuo,WANG Chunli,XUE Fei,et al. Study on acoustic emission and strain field evolution of red sandstone under different loading and unloading paths[J]. Chinese Journal of Rock Mechanics and Engineering,2022,41(S1):2881-2891. doi: 10.13722/j.cnki.jrme.2021.0261 [5] DING Z W ,JIA J D,TANG Q B,et al. Mechanical properties and energy damage evolution characteristics of coal under cyclic loading and unloading[J]. Rock Mechanics & Rock Engineering,2022,55(8):4765-4781. [6] FRIEDMAN M,PERKINS R D,GREEN S J. Observation of brittle-deformation features at maximum stress of westerly granite and solenhofen limestone[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1970,7(3):297-302. [7] 王登科,刘淑敏,魏建平,等. 冲击载荷作用下煤的破坏特性试验研究[J]. 采矿与安全工程学报,2017,34(3):594-600.WANG Dengke,LIU Shumin,WEI Jianping,et al. The failure characteristics of coal under impact load in laboratory[J]. Journal of Mining & Safety Engineering,2017,34(3):594-600. [8] 杨科,刘文杰,马衍坤,等. 煤岩组合体冲击动力学特征试验研究[J]. 煤炭学报,2022,47(7):2569-2581. doi: 10.13225/j.cnki.jccs.2021.1279YANG Ke,LIU Wenjie,MA Yankun,et al. Experimental research on dynamic characteristics of coal-rock combined specimen[J]. Journal of China Coal Society,2022,47(7):2569-2581. doi: 10.13225/j.cnki.jccs.2021.1279 [9] YIN Zhiqiang,CHEN Wensu,HAO Hong,et al. Dynamic compressive test of gas-containing coal using a modified split Hopkinson pressure bar system[J]. Rock Mechanics & Rock Engineering,2020,53(2):815-829. [10] 朱要亮,俞缙,付晓强,等. 高温损伤后岩石动态损伤本构模型[J]. 长江科学院院报,2022,39(7):102-109. doi: 10.11988/ckyyb.20210543ZHU Yaoliang,YU Jin,FU Xiaoqiang,et al. A novel dynamic constitutive model after temperature damage for rock[J]. Journal of Changjiang River Scientific Research Institute,2022,39(7):102-109. doi: 10.11988/ckyyb.20210543 [11] 刘军忠,许金余,吕晓聪,等. 围压下岩石的冲击力学行为及动态统计损伤本构模型研究[J]. 工程力学,2012,29(1):55-63.LIU Junzhong,XU Jinyu,LYU Xiaocong,et al. Study on dynamic behavior and damage constitutive model of rock under impact loading with confining pressure[J]. Engineering Mechanics,2012,29(1):55-63. [12] 胡克智,刘宝琛,马光,等. 煤矿的冲击地压[J]. 科学通报,1966(9):430-432.HU Kezhi,LIU Baochen,MA Guang,et al. Rock burst of coal mines[J]. Chinese Science Bulletin,1966(9):430-432. [13] DING Z W,LI X F,HUANG X,et al. Feature extraction,recognition,and classification of acoustic emission waveform signal of coal rock sample under uniaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences,2022,160. DOI: 10.1016/J.IJRMMS.2022.105262. [14] 杨健锋,柴敬,张丁丁,等. 基于黏聚裂纹模型的煤岩体韧性断裂机制研究[J]. 岩石力学与工程学报,2021,40(增刊2):3014-3023.YANG Jianfeng,CHAI Jing,ZHANG Dingding,et al. Study on ductile fracture mechanism of coal and rock mass based on cohesive crack model[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(S2):3014-3023. [15] KIDYBINSKI A. Bursting liability indices of coal[J]. International Journal of Rock Mechanics and Mining Sciences,1981,18(4):295-304. doi: 10.1016/0148-9062(81)91194-3 [16] 齐庆新,彭永伟,李宏艳,等. 煤岩冲击倾向性研究[J]. 岩石力学与工程学报,2011,30(增刊1):2736-2742.QI Qingxin,PENG Yongwei,LI Hongyan,et al. Study of bursting liability of coal and rock[J]. Chinese Journal of Rock Mechanics and Engineering,2011,30(S1):2736-2742. [17] 陈翠刚,周俊,王鹏,等. 冲击载荷下对称裂纹动态扩展规律研究[J]. 矿业研究与开发,2022,42(6):126-133. doi: 10.13827/j.cnki.kyyk.2022.06.004CHEN Cuigang,ZHOU Jun,WANG Peng,et al. Study on dynamic propagation law of symmetrical crack under impact load[J]. Mining Research and Development,2022,42(6):126-133. doi: 10.13827/j.cnki.kyyk.2022.06.004 [18] 蔚斐,张通,刘文杰,等. 不同卸荷应力路径下煤样破坏特征实验研究[J]. 工矿自动化,2022,48(4):96-104. doi: 10.13272/j.issn.1671-251x.2021090081YU Fei,ZHANG Tong,LIU Wenjie,et al. Study on failure characteristics of coal sample under different unloading stress paths[J]. Journal of Mine Automation,2022,48(4):96-104. doi: 10.13272/j.issn.1671-251x.2021090081 [19] 代树红,王晓晨,潘一山,等. 模量指数评价煤的冲击倾向性的实验研究[J]. 煤炭学报,2019,44(6):1726-1731.DAI Shuhong,WANG Xiaochen,PAN Yishan,et al. Experimental study on the evaluation of coal burst tendency utilizing modulus index[J]. Journal of China Coal Society,2019,44(6):1726-1731. [20] 潘一山,耿琳,李忠华. 煤层冲击倾向性与危险性评价指标研究[J]. 煤炭学报,2010,35(12):1975-1978.PAN Yishan,GENG Ling,LI Zhonghua. Research on evaluation indices for impact tendency and danger of coal seam[J]. Journal of China Coal Society,2010,35(12):1975-1978. [21] 宫凤强,赵英杰,王云亮,等. 煤的冲击倾向性研究进展及冲击地压“人-煤-环”三要素机理[J]. 煤炭学报,2022,47(5):1974-2010. doi: 10.13225/j.cnki.jccs.2022.0165GONG Fengqiang,ZHAO Yingjie,WANG Yunliang,et al. Research progress of coal bursting liability indices and coal burst "Human-Coal-Environment" three elements mechanism[J]. Journal of China Coal Society,2022,47(5):1974-2010. doi: 10.13225/j.cnki.jccs.2022.0165 [22] 刘石,许金余,白二雷,等. 基于分形理论的岩石冲击破坏研究[J]. 振动与冲击,2013,32(5):163-166.LIU Shi,XU Jinyu,BAI Erlei,et al. Research on impact fracture of rock based on fractal theory[J]. Journal of Vibration and Shock,2013,32(5):163-166. [23] 周强,潘永泰,郭庆,等. 不同冲击比能下煤岩颗粒破碎的分形演化[J]. 煤炭工程,2020,52(4):143-148.ZHOU Qiang,PAN Yongtai,GUO Qing,et al. Fractal evolution of particle fragmentation of ore and rock under different impact energy[J]. Coal Engineering,2020,52(4):143-148.