留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

综采工作面三机数字孪生及协同建模方法

刘清 张龙 李天越 杜鹏飞

刘清,张龙,李天越,等. 综采工作面三机数字孪生及协同建模方法[J]. 工矿自动化,2023,49(2):47-55.  doi: 10.13272/j.issn.1671-251x.2022120061
引用本文: 刘清,张龙,李天越,等. 综采工作面三机数字孪生及协同建模方法[J]. 工矿自动化,2023,49(2):47-55.  doi: 10.13272/j.issn.1671-251x.2022120061
LIU Qing, ZHANG Long, LI Tianyue, et al. A three machine digital twin and collaborative modeling method for fully mechanized working face[J]. Journal of Mine Automation,2023,49(2):47-55.  doi: 10.13272/j.issn.1671-251x.2022120061
Citation: LIU Qing, ZHANG Long, LI Tianyue, et al. A three machine digital twin and collaborative modeling method for fully mechanized working face[J]. Journal of Mine Automation,2023,49(2):47-55.  doi: 10.13272/j.issn.1671-251x.2022120061

综采工作面三机数字孪生及协同建模方法

doi: 10.13272/j.issn.1671-251x.2022120061
基金项目: 山东省重点研发计划项目(2020CXGC011501)。
详细信息
    作者简介:

    刘清(1984—),男,河北秦皇岛人,副研究员,硕士,现主要从事自动化及无人化开采技术方面的研究工作,E-mail:liuqing@tdmarco.com

  • 中图分类号: TD67

A three machine digital twin and collaborative modeling method for fully mechanized working face

  • 摘要: 针对现有煤矿设备数字孪生建模方法主要侧重对单一设备进行建模,缺少三机耦合协同关系分析的问题,提出了综采工作面三机数字孪生及协同建模方法。采用智能体建模方法构建包含感知单元、控制单元和执行单元的采煤机、液压支架、刮板输送机智能体模型,依据三维建模流程构建对应的可视化模型,以智能体模型驱动三维模型运动,二者结合构成三机数字孪生模型;采用离散事件建模方法构建涵盖三机数字孪生模型交互过程的协同工艺模型,按照时序梳理三机开采工艺,形成三机协同工艺时序表。数字孪生模型用于描述综采三机的状态与行为,进行个体层面的仿真计算;协同工艺模型用于表征数字孪生模型之间的时序动作转换,实现对三机协同过程整体的推演。采煤机数字孪生模型的摇臂升降仿真实验结果表明,与真实设备测量数据对比,模型误差小,摇臂倾角平均误差为2.3°;液压支架数字孪生模型的连续升柱动作仿真实验结果表明,模型与真实设备的一致性好,与真实设备测量数据对比,角度平均误差为0.14°,行程平均误差为6.3 mm;结合煤矿实际生产日志对构建的三机协同模型进行虚实仿真实验,结果表明,所构建的综采工作面三机数字孪生模型与真实设备实现了相互映射,仿真结果与真实记录接近,三机协同模型可以较为准确地反映协同开采过程。综采工作面三机数字孪生及协同建模方法为综采设备及其协同关系的数字孪生建模提供了新思路。

     

  • 图  1  数字孪生模型、智能体模型与三维模型的关系

    Figure  1.  Relation among digital twin model, agent model and 3D model

    图  2  智能体模型组成

    Figure  2.  The agent model components

    图  3  三维模型建模流程

    Figure  3.  3D model modeling flow

    图  4  真实采煤机与三维模型对比

    Figure  4.  Comparison of real shearer and 3D model

    图  5  采煤机左侧摇臂倾角数字孪生数据与真实数据对比曲线

    Figure  5.  Comparison curves between digital twin data and real data of dip angle of shearer left rocker arm

    图  6  简化的液压支架杆系结构

    Figure  6.  Simplified structure of hydraulic support rod system

    图  7  真实液压支架与三维模型对比

    Figure  7.  Comparison of real equipment and 3D model of hydraulic support

    图  8  液压支架姿态各变量连续变化曲线

    Figure  8.  Continuous change curves of various variables of hydraulic support attitude

    图  9  真实刮板输送机与三维模型对比

    Figure  9.  Comparison of real equipment and 3D model of scraper conveyor

    图  10  三机协同三维模型

    Figure  10.  Three machine collaborative 3D model

    图  11  三机协同时序仿真

    Figure  11.  Time sequence simulation of three machine collaboration

    表  1  采煤机关键感知数据项

    Table  1.   Key perception data items of shearer

    数据类型及传感器关键感知数据项
    结构尺寸滚筒:直径、截深
    摇臂:长度、旋转锚点
    机身:长度、宽度、厚度
    倾角传感器左右摇臂升降角度
    行程传感器左右滚筒采高卧底
    测速传感器采煤机行进速度
    编码器/红外发射器采煤机位置
    下载: 导出CSV

    表  2  液压支架运动仿真结果

    Table  2.   Hydraulic support motion simulation reaults

    项目后连杆
    角度/(°)
    前连杆
    角度/(°)
    立柱杆
    角度/(°)
    平衡杆
    角度/(°)
    掩护梁
    角度/(°)
    顶梁
    角度/(°)
    立柱
    长度/ mm
    平衡杆
    长度/ mm
    支护
    高度/mm
    初始值100.00100.0080.0020.0020.0003000.001000.003800.00
    最终值107.17122.8977.6232.5040.8503163.701137.403800.00
    测量值107.02123.0377.5132.2140.750.053158.591130.213793.39
    误差0.150.140.110.290.100.055.117.196.61
    下载: 导出CSV

    表  3  部分三机协同工艺时序表数据

    Table  3.   Partial three machine collaborative process schedule data

    事件名称动作执行
    对象
    指令持续
    时间/s
    动作
    指令
    采煤机开始
    位置/架
    采煤机结束
    位置/架
    割底煤采煤机5牵启170170
    3左降170170
    4右牵170168
    4加速168150
    机尾顺序移架175号支架3降柱165164
    4移架164163
    4升柱163162
    下载: 导出CSV
  • [1] 张帆,葛世荣,李闯. 智慧矿山数字孪生技术研究综述[J]. 煤炭科学技术,2020,48(7):168-176. doi: 10.13199/j.cnki.cst.2020.07.017

    ZHANG Fan,GE Shirong,LI Chuang. Research summary on digital twin technology for smart mines[J]. Coal Science and Technology,2020,48(7):168-176. doi: 10.13199/j.cnki.cst.2020.07.017
    [2] 王国法,王虹,任怀伟,等. 智慧煤矿2025情景目标和发展路径[J]. 煤炭学报,2018,43(2):295-305. doi: 10.13225/j.cnki.jccs.2018.0152

    WANG Guofa,WANG Hong,REN Huaiwei,et al. 2025 scenarios and development path of intelligent coal mine[J]. Journal of China Coal Society,2018,43(2):295-305. doi: 10.13225/j.cnki.jccs.2018.0152
    [3] 王国法,杜毅博. 智慧煤矿与智能化开采技术的发展方向[J]. 煤炭科学技术,2019,47(1):1-10.

    WANG Guofa,DU Yibo. Development direction of intelligent coal mine and intelligent mining technology[J]. Coal Science and Technology,2019,47(1):1-10.
    [4] 王国法,刘峰,庞义辉,等. 煤矿智能化——煤炭工业高质量发展的核心技术支撑[J]. 煤炭学报,2019,44(2):349-357.

    WANG Guofa,LIU Feng,PANG Yihui,et al. Coal mine intellectualization:the core technology of high quality development[J]. Journal of China Coal Society,2019,44(2):349-357.
    [5] 陶飞,刘蔚然,刘检华,等. 数字孪生及其应用探索[J]. 计算机集成制造系统,2018,24(1):1-18.

    TAO Fei,LIU Weiran,LIU Jianhua,et al. Digital twin and its potential application exploration[J]. Computer Integrated Manufacturing Systems,2018,24(1):1-18.
    [6] 陶飞,刘蔚然,张萌,等. 数字孪生五维模型及十大领域应用[J]. 计算机集成制造系统,2019,25(1):1-18.

    TAO Fei,LIU Weiran,ZHANG Meng,et al. Five-dimension digital twin model and its ten applications[J]. Computer Integrated Manufacturing Systems,2019,25(1):1-18.
    [7] 葛世荣,王世博,管增伦,等. 数字孪生——应对智能化综采工作面技术挑战[J]. 工矿自动化,2022,48(7):1-12.

    GE Shirong,WANG Shibo,GUAN Zenglun,et al. Digital twin:meeting the technical challenges of intelligent fully mechanized working face[J]. Journal of Mine Automation,2022,48(7):1-12.
    [8] 王宏伟,武亚丹,陈龙. 液压支架数字孪生体联合建模方法[J]. 工矿自动化,2022,48(10):13-19.

    WANG Hongwei,WU Yadan,CHEN Long. Hydraulic support digital twin joint modeling method[J]. Journal of Mine Automation,2022,48(10):13-19.
    [9] 孙继平. 煤矿智能化与矿用5G和网络硬切片技术[J]. 工矿自动化,2021,47(8):1-6.

    SUN Jiping. Coal mine intelligence,mine 5G and network hard slicing technology[J]. Industry and Mine Automation,2021,47(8):1-6.
    [10] 谢嘉成. VR环境下综采工作面“三机”监测与动态规划方法研究[D]. 太原: 太原理工大学, 2018.

    XIE Jiacheng. Method of on monitoring and dynamic planning for "three machines" in a fully mechanized coal mining face under VR environment[D]. Taiyuan: Taiyuan University of Technology, 2018.
    [11] 葛世荣,张帆,王世博,等. 数字孪生智采工作面技术架构研究[J]. 煤炭学报,2020,45(6):1925-1936.

    GE Shirong,ZHNAG Fan,WANG Shibo,et al. Digital twin for smart coal mining work face:technological frame and construction[J]. Journal of China Coal Society,2020,45(6):1925-1936.
    [12] 洪飞. 基于数字孪生和数据驱动的新型煤矿智能支护监控系统设计[J]. 煤矿现代化,2021,30(5):116-118,122. doi: 10.13606/j.cnki.37-1205/td.2021.05.051

    HONG Fei. Design of novel coal mine intelligent support monitoring system based on digital twin and data driven[J]. Coal Mine Modernization,2021,30(5):116-118,122. doi: 10.13606/j.cnki.37-1205/td.2021.05.051
    [13] 吴云超,傅琛,张宁馨. 面向数字孪生战场的智能体建模框架构建[J]. 指挥信息系统与技术,2022,13(4):19-25,31.

    WU Yunchao,FU Chen,ZHANG Ningxin. Construction of agent modeling framework for digital twin battlefield[J]. Command Information System and Technology,2022,13(4):19-25,31.
    [14] 王龙,黄锋. 多智能体博弈、学习与控制[J]. 自动化学报,2023,49(3):1-34. doi: 10.16383/j.aas.c220680

    WANG Long,HUANG Feng. An interdisciplinary survey of multi-agent games,learning,and control[J]. Acta Automatica Sinica,2023,49(3):1-34. doi: 10.16383/j.aas.c220680
    [15] 李梅,康济童,刘晖,等. 基于BIM与GIS的矿山巷道参数化三维建模技术研究[J]. 煤炭科学技术,2022,50(7):25-35.

    LI Mei,KANG Jitong,LIU Hui,et al. Research on parametric 3D modeling technology of mine roadway based on BIM and GIS[J]. Coal Science and Technology,2022,50(7):25-35.
    [16] 卢阳. 基于感知的并行离散事件仿真组件连接关系建模技术研究[D]. 长沙: 国防科学技术大学, 2012.

    LU Yang. Research on component connection modeling technology of parallel discrete event simulation based on perception [D]. Changsha: National University of Defense Technology, 2012.
    [17] 蔡安江,刘俊强,刘亚东,等. 基于隐式数字孪生的采煤机自主调高策略研究[J]. 矿业研究与开发,2022,42(11):188-194.

    CAI Anjiang,LIU Junqiang,LIU Yadong,et al. Research on the strategy of independent height adjustment of shearer based on implicit digital twin[J]. Mining Research and Development,2022,42(11):188-194.
    [18] 杨桂香,卢洪坤,梁敏富. 两柱式液压支架姿态角矢量解算模型[J]. 煤矿机械,2022,43(11):31-33.

    YANG Guixiang,LU Hongkun,LIANG Minfu. Two-column hydraulic support attitude angle vector solution model[J]. Coal Mine Machinery,2022,43(11):31-33.
    [19] 苏岐芳, 陈科. 两类求解非线性方程的高阶算法[J/OL]. 数学的实践与认识: 1-10[2023-02-06]. http://kns.cnki.net/kcms/detail/11.2018.o1.20221125.1406.032.html.

    SU Qifang, CHEN Ke. Two classes of higher-order algorithms for solving nonlinear equations [J/OL]. Mathematics in Practice and Theory: 1-10 [2023-02-06]. http://kns.cnki.net/kcms/detail/11.2018.o1.20221125.1406.032.html.
    [20] 李祖旭. 刮板输送机形态监测技术研究[D].徐州: 中国矿业大学, 2022.

    LI Zuxu. Research on shape monitoring technology of scraper conveyor[D].Xuzhou: China University of Mining and Technology, 2022.
    [21] 张文静. 基于PLC采煤机与刮板输送机联动控制技术研究[J]. 山东煤炭科技,2022,40(12):135-137.

    ZHANG Wenjing. Research on linkage control technology of shearer and scraper conveyor based on PLC[J]. Shandong Coal Science and Technology,2022,40(12):135-137.
    [22] 胡相捧, 刘新华. 两柱掩护式液压支架初撑过程的机构演化机理[J/OL]. 煤炭科学技术:1-12[2023-02-06]. https://doi.org/10.13199/j.cnki.cst.2022-1055.

    HU Xiangpeng, LIU Xinhua. Mechanism evolution mechanism of active support process of two-leg shield[J/OL]. Coal Science and Technology: 1-12 [2023-02-06]. https://doi.org/10.13199/j.cnki.cst.2022-1055.
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  1361
  • HTML全文浏览量:  35
  • PDF下载量:  117
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-19
  • 修回日期:  2023-02-09
  • 网络出版日期:  2023-02-27

目录

    /

    返回文章
    返回